Die Legendre Polynome
Definition:
\( P_n(x) =
\sum\limits_{m = 0}^{M} (-1)^m \dfrac{(2n - 2m)!}{2^n m! (n-m)! (n-2m)!} x^{n-2m}\)
wobei \(M = \dfrac{n}{2}\) falls \(n\) gerade
oder \(\dfrac{n-1}{2} \) falls \(n\) ungerade.
- Wählen Sie ein Legendre Polynome aus dem Menu aus.
- Durch das Drücken des Schalters "Plot Legendre Polynomial" wird das gewählte Polynom geplottet.
- Der Anzeigebereich wird dabei immer auf das letzte geplottete Polynome
angepasst, damit eine möglichst gute Darstellung erreicht wird.
- Durch nochmaliges Plotten eines Polynoms kann der Anzeigebereich immer auf dieses
Polynom optimiert werden.
- "Clear Plot Area" löscht alle angezeigten Polynome
Die ersten neun Legendre Polynome als ausgeschriebenes Polynom:
- \( P_0(x) = 1 \)
- \( P_1(x) = x \)
- \( P_2(x) = \frac{1}{ 2} ( 3x^2 - 1 ) \)
- \( P_3(x) = \frac{1}{ 2} ( 5x^3 - 3x ) \)
- \( P_4(x) = \frac{1}{ 8} ( 35x^4 - 30x^2 + 3 ) \)
- \( P_5(x) = \frac{1}{ 8} ( 63x^5 - 70x^3 + 15x ) \)
- \( P_6(x) = \frac{1}{ 16} ( 231x^6 - 315x^4 + 105x^2 - 5) \)
- \( P_7(x) = \frac{1}{ 16} ( 429x^7 - 693x^5 + 315x^3 -35x )\)
- \( P_8(x) = \frac{1}{128} ( 6435x^8 -12012x^6 +6930x^4 -1260x^2 +35)\)