SPRKKR

A spin polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) code for Calculating Solid State Properties

Hubert Ebert

User's Guide

December 5, 2017

Universität München Dept. Chemie – Phys. Chemie Butenandtstr. 5-13 D-81377 München

©2017 by H. Ebert, München

H. Ebert SPRKKR

A spin polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) code for Calculating Solid State Properties

version 7.7

Prof. Dr. Hubert Ebert Universität München Dept. Chemie – Phys. Chemie Butenandtstr. 5-13 D-81377 München Germany

Contents

1	Intr	oduction 1			
	1.1	The SPRKKR -package			
	1.2	2 Formal Background			
	1.3	Short Des	scription	4	
		1.3.1 Th	he graphical user interface xband	4	
		1.3.2 Pr	rograms	5	
		1.3.3 Fi	les	5	
		1.3.4 Th	he post-processing program plot	6	
2	The	SPRKKR in	nput file	7	
	2.1	Input For	rmat	7	
	2.2	General I	nput Parameters	8	
		2.2.1 Fi	le names and output control	8	
		2.2.2 A	ngular momentum expansion	9	
		2.2.3 Ca	alculating the scattering path operator	9	
		2.2.4 \vec{k} -	dependent KKR structure constants	11	
		2.2.5 C	PA-calculations for disordered alloy systems	12	
		2.2.6 Ca	alculation mode	12	
		2.2.7 O	rientation of the magnetisation	13	
		2.2.8 M	lanipulating the spin-orbit coupling	13	
3	Elec	tronic stru	acture calculations	15	
	3.1	Creating	self-consistent potentials	15	
	3.2	Phase shi	ift $\delta_{\kappa}(E)$	22	
	3.3	Plotting of wave functions			

	3.4	Spin-c	brbit parameter	27
	3.5	Dispe	rsion relation $E(\vec{k})$	29
	3.6	Bloch	spectral function $A_B(E, \vec{k})$	32
	3.7	Densi	ty of States $n(E)$	36
4	Calo	culating	g ground state properties	40
	4.1	Magn	etic Moments and Hyperfine Fields	40
	4.2	Disord	lered Local Moment	41
	4.3	Magn	etic Form Factor	42
	4.4	Excha	nge coupling parameters J_{ij}	43
	4.5	Magn	etic torque $T_{\vec{u}}$	48
5	Line	ear resp	onse calculations	53
	5.1	Magn	etic susceptibility	53
		5.1.1	Example	54
	5.2	Gilber	t damping parameter	56
		5.2.1	Gilbert damping at $T = 0$ K	56
		5.2.2	Gilbert damping at finite temperature	58
	5.3	Resist	ivity	62
		5.3.1	Example	63
		5.3.2	Resistivity at finite temperature	64
6	Calo	culating	g spectroscopic properties	65
	6.1	Calcul	lation of spectroscopic properties included in kkrgen	65
		6.1.1	General remarks	65
		6.1.2	X-ray absorption spectroscopy	65
		6.1.3	X-ray emission spectroscopy	70
		6.1.4	X-ray magneto-optics	70
		6.1.5	Non-relativistic Appearance Potential Spectroscopy	72
		6.1.6	Auger Electron Spectroscopy	75
		6.1.7	X-ray Photoemission spectroscopy	79
		6.1.8	Magnetic Compton profile	84
		6.1.9	Positron annihilation	86

	6.2 Calculation of spectroscopic properties included in kkrspec			91
		6.2.1	General remarks	91
		6.2.2	Structural information	92
		6.2.3	Angle resolved photoemission calculations	95
		6.2.4	Spin polarized LEED calculations	100
		6.2.5	Band structure calculations	100
-	The		na sa sina na sa	101
/	Ine	post-p	rocessing program pion	101
	_			101
8	Exar	nples		104
8 9	Exar Tech	mples nnical d	etails, installation and dimensioning	104
8 9	Exar Tech 9.1	mples mical d Techni	l etails, installation and dimensioning ical details	104 106 106
8 9	Exar Tech 9.1 9.2	mples nnical d Techni Install	l etails, installation and dimensioning ical details	104 106 106
8 9	Exar Tech 9.1 9.2	mples nnical d Techni Install 9.2.1	l etails, installation and dimensioning ical details	104 106 106 106
8 9	Exar Tech 9.1 9.2	mples nnical d Techni Install 9.2.1 9.2.2	l etails, installation and dimensioning ical details	106 106 106 106 107
8 9	Exar Tech 9.1 9.2	mples mical d Techni Install 9.2.1 9.2.2 9.2.3	letails, installation and dimensioning ical details ation Required libraries Unpacking Preparing the make file	106 106 106 106 107 107
8 9	Exar Tech 9.1 9.2	mples mical d Techni Install 9.2.1 9.2.2 9.2.3 9.2.4	letails, installation and dimensioning ical details ation ation Required libraries Unpacking Preparing the make file Compiling	106 106 106 106 107 107

<u>1 Introduction</u>

1.1 The SPRKKR-package

This manual describes the use of the spin-polarized relativistic KKR band structure program package **SPRKKR**. Development of this package started during a post-doc stay of H. Ebert with B. L. Gyorffy in 1986/1987 and was continued later with contributions by M. Battocletti, D. Benea, M. Kosuth, J. Minar, A. Perlov, V. Popescu, and others. Several subroutines used by **SPRKKR** have been kindly supplied by H. Akai, S. Blügel, J. J. Rehr, W. M. Temmerman, and P. Strange. The package has seen a major extension by including the spectroscopy module of J. Braun, that was later on further extended. P. Blaha kindly made the LATEX-files of the WIEN97 manual available, that have been used as a template for this manual.

The **SPRKKR**-package allows to calculate the electronic structure of arbitrary three-dimensional periodic systems, including in particular systems with chemical disorder. The treatment of two dimensional periodic systems (e.g. surfaces) can be done at the moment only by using an auxiliary system having three dimensional periodicity or by making use of the cluster approximation. The electronic structure calculation can be done in a non-relativistic, scalar-relativistic as well as fully relativistic mode. In the scalar-relativistic mode paramagnetic as well as spin-polarized systems can be treated, including non-collinear spin structures and arbitrary spin spirals. In the fully relativistic mode, paramagnetic as well as spin-polarized systems with an arbitrary spin configuration can be dealt with. On the basis of the electronic structure calculation many different properties can be investigated by means of the **SPRKKR**-package, with a strong emphasize on response functions and spectroscopic properties. This applies in particular for the fully relativistic mode.

At the moment the **SPRKKR**-package is restricted to the atomic sphere approximation (ASA) geometry for the charge density and potential. This restriction will be removed in the near future allowing in addition full potential type calculations.

The **SPRKKR**-package is based on the KKR-Green's function formalism that makes use of multiple scattering theory. This implies that the information on the electronic structure of a system is not expressed in terms of Bloch wave functions and eigenvalues but the corresponding Green's function, leading to an extreme flexibility of the method. An introduction to band structure theory, including the KKR method, can be found for example in a review article by S. Faulkner [1]. A more detailed presentation of the KKR method is given in the

monographies of P. Weinberger [2], A. Gonis and W. Butler [3, 4], that also deal with the spin-polarized relativistic case. The KKR-formalism for this case will be sketched in short in the next section. More information and many applications can be found in two older review articles [5, 6] and a rather new one [7] as well as on the webpage http://www.kkr-gf.org/.

The next chapter describes the use of the **SPRKKR**-package for a number of standard applications. This is followed by a description of the use of the **plot** that allows to reformat and modify calculated data for display and analysis. Technical information and a guideline for installation of the **SPRKKR**-package can be found in chapter 9. Finally some references connected with applications of the **SPRKKR**-package are collected at the end. For a more complete list of references see [5] and [8].

1.2 Formal Background

A short description of the spin-polarized relativistic Korringa-Kohn-Rostoker Green's function method that supplies the formal background for the **SPRKKR**-package is given in the following. Throughout the conventions introduced in the books of M. E. Rose will be used [9, 10].

The spin-polarized relativistic Korringa-Kohn-Rostoker Green's function method is based on the following Dirac-Hamiltonian for a spin-polarized system

$$\left[\frac{\hbar}{i}c\vec{\alpha}\cdot\vec{\nabla} + \beta mc^2 + V_{\text{eff}}(\vec{r}) + \beta\vec{\sigma}\cdot\vec{B}_{\text{eff}}(\vec{r})\right]\Psi_i(\vec{r}) = \epsilon_i\Psi_i(\vec{r})$$
(1.1)

with

$$\vec{B}_{\text{eff}}(\vec{r}) = \vec{B}_{\text{ext}}(\vec{r}) + \frac{\partial E_{\text{xc}}[n,\vec{m}]}{\partial \vec{m}(\vec{r})} .$$
(1.2)

The spin dependent potential is constructed within a relativistic version of spin density functional theory. With the potentials functions $V_{\text{eff}}(\vec{r})$ and $\vec{B}_{\text{eff}}(\vec{r})$ available, the first step is to solve the corresponding single site Dirac equation for every atom type. In principle, the effective magnetic field $\vec{B}_{\text{eff}}(\vec{r})$ may point in any direction (non-collinear magnetism). However, calculations are simplified for $\vec{B}_{\text{eff}}(\vec{r}) = B_{\text{eff}}(r)\hat{\vec{e}}_{z}$. Therefore the single site Dirac equation is solved in a local frame of reference for which this condition is fulfilled. For this purpose the ansatz

$$\psi_{\nu} = \sum_{\Lambda} \psi_{\Lambda \nu} \tag{1.3}$$

is used with the partial waves $\psi_{\Lambda\nu}$ chosen to have the same form as the linearly independent solutions for a spherical symmetric potential:

$$\psi_{\Lambda}(\vec{r}, E) = \begin{pmatrix} g_{\kappa}(r, E) \chi_{\Lambda}(\hat{\vec{r}}) \\ i f_{\kappa}(r, E) \chi_{-\Lambda}(\hat{\vec{r}}) \end{pmatrix}.$$
(1.4)

This leads to the following set of coupled radial differential equations:

$$P'_{\Lambda\nu} = -\frac{\kappa}{r} P_{\Lambda\nu} + \left[\frac{E-V}{c^2} + 1\right] Q_{\Lambda\nu} + \frac{B}{c^2} \sum_{\Lambda'} \langle \chi_{-\Lambda} | \sigma_{\mathbf{z}} | \chi_{-\Lambda'} \rangle Q_{\Lambda'\nu}$$
(1.5)

$$Q'_{\Lambda\nu} = \frac{\kappa}{r} Q_{\Lambda\nu} - [E - V] P_{\Lambda\nu} + B \sum_{\Lambda'} \langle \chi_{\Lambda} | \sigma_{\rm z} | \chi_{\Lambda'} \rangle P_{\Lambda'\nu} .$$
(1.6)

In practice the coupling is restricted to $\mu - \mu' = 0$ and l - l' = 0 with two functions $P_{\kappa\mu\nu}$ and $P_{-\kappa-1\mu\nu}$ coupled for $|\mu| < j$ and no coupling present otherwise.

Next, the single site t-matrix $t_{\Lambda\Lambda'}$ is calculated and transformed from the local to the global frame of reference (if necessary). With all t-matrices available, the multiple scattering problem is solved either by performing a BZ-integration

$$\tau_{\Lambda\Lambda'}^{nn'}(E) = \frac{1}{\Omega_{\rm BZ}} \int_{\Omega_{\rm BZ}} d^3k [\underline{t}^{-1}(E) - \underline{G}(\vec{k}, E)]_{\Lambda\Lambda'}^{-1} e^{i\vec{k}(\vec{R}_n - \vec{R}_{n'})}$$
(1.7)

or using the real space cluster approach. This means that the scattering path operator $\tau_{\Lambda\Lambda'}^{nn'}(E)$ is obtained by inverting the real space KKR-matrix:

$$\underline{\tau} = [\underline{m} - \underline{G}]^{-1} . \tag{1.8}$$

If there is substitutional disorder present in the system, this is accounted for by making use of the Coherent Potential Approximation (CPA) alloy theory. This implies that the CPA equations

$$x_{\rm A}\underline{\tau}^{nn,\rm A} + x_{\rm B}\underline{\tau}^{nn,\rm B} = \underline{\tau}^{nn,\rm CPA} \tag{1.9}$$

$$\underline{\tau}^{nn,\alpha} = \underline{\tau}^{nn,\text{CPA}} \left[1 + \left(\underline{t}_{\alpha}^{-1} - \underline{t}_{\text{CPA}}^{-1} \right) \underline{\tau}^{nn,\text{CPA}} \right]^{-1}$$
(1.10)

have to be solved iteratively.

After the multiple scattering problem has been solved, the resulting scattering path operator has to be transformed back to the local frame of reference in case of a non-collinear spin configuration. Finally, the Green's function is given by:

$$G(\vec{r}, \vec{r}', E) = \sum_{\Lambda\Lambda'} Z_{\Lambda}^{n}(\vec{r}, E) \tau_{\Lambda\Lambda'}^{nn'}(E) Z_{\Lambda'}^{n'\times}(\vec{r}', E) -\sum_{\Lambda} \left[Z_{\Lambda}^{n}(\vec{r}, E) J_{\Lambda}^{n\times}(\vec{r}', E) \Theta(r' - r) + J_{\Lambda}^{n}(\vec{r}, E) Z_{\Lambda}^{n\times}(\vec{r}', E) \Theta(r - r') \right] \delta_{nn'} .$$

$$(1.11)$$

From this the charge density and spin magnetization are obtained by:

$$n(\vec{r}) = -\frac{1}{\pi} \Im \operatorname{Trace} \int^{E_F} dE \, G(\vec{r}, \vec{r}, E)$$
(1.12)

$$m(\vec{r}) = -\frac{1}{\pi} \Im \operatorname{Trace} \int^{E_F} dE \,\beta \sigma_z \, G(\vec{r}, \vec{r}, E) \,. \tag{1.13}$$

Recalculating the potential functions *V* and *B* from these, the SCF-cycle is closed. Using an appropriate algorithm, *V* and *B* can be updated to achieve self-consistency.

From the Green's function most electronic properties can be derived straightforwardly. For example the spin and orbital magnetic moments are obtained from:

$$\mu_{\rm spin} = -\frac{\mu_{\rm B}}{\pi} \Im \operatorname{Trace} \int_{-}^{E_F} dE \int_{V} d^3 r \,\beta \sigma_{\rm z} \,G(\vec{r},\vec{r},E)$$
(1.14)

$$\mu_{\rm orb} = -\frac{\mu_{\rm B}}{\pi} \Im \operatorname{Trace} \int_{V}^{E_{F}} dE \int_{V} d^{3}r \,\beta l_{\rm z} \,G(\vec{r},\vec{r},E) \,.$$
(1.15)

These expressions are based on the identity:

$$\Im G(E) = -\pi \sum_{\alpha} |\alpha\rangle \langle \alpha | \,\delta(E - E_{\alpha}) , \qquad (1.16)$$

where $|\alpha\rangle$ are single particle electronic states with energies E_{α} . Many other electronic and spectroscopic properties can be derived from this identity as well.

The standard mode of the KKR package is the four component Dirac formalism sketched above. However, the program also allows to use more complex Hamiltonians or to manipulate the spin orbit coupling. Non- or scalar relativistic calculations are also possible to a certain extent. So far the atomic sphere approximation (ASA) is used as a geometrical constraint for the potential functions, charge density and spin magnetisation. A forthcoming release will supply a full potential mode.

1.3 Short Description

A short description of the various components of the **SPRKKR**-package and their interaction is given in the following.

1.3.1 The graphical user interface **xband**

The use of the SPR-KKR package is supported by the graphical user interface (GUI) **xband**. This tool allows to set up the various input files via the **Create input file** menu. An expert

mode allows to set variables needed for testing, additional non standard output etc. **xband** also creates a dummy potential file to start a SCF calculation using **kkrscf**. Finally, **xband** allows to run the various programs (see 1.3.2) interactively or to submit batch jobs, to handle the various files (see 1.3.3) and to perform postprocessing and graphics using the programs **plot** (see 1.3.4) and **xmgrace**.

For further details see the **xband** manual.

1.3.2 Programs

The **SPRKKR** package consists of several programs used in general for different tasks.

kkrscf

This program is exclusively used for SCF-calculations.

• kkrgen

This is the general purpose program that is used for most tasks, i.e., calculating the DOS, Bloch spectral functions, XAS spectra and so on.

• embscf & embgen

These programs differ from **kkrscf** & **kkrgen** only in the way the τ -matrices are calculated. While the programs **kkrscf** & **kkrgen** use a BZ-integration the cluster approach is used here.

kkrchi

This program allows to calculate a number of linear response functions.

kkrspec

This program is specialized on various spectroscopic applications.

The programs kkrscf, kkrgen, embscf, embgen, kkrchi, and kkrspec are called, e.g., as:

kkrscf < Fe.inp

Standard output (and error) is recommended to be written to a file as shown below. In addition to the input file (here Fe.inp) at least a potential file has to be supplied. Its name is specified in the input file, e.g., via POTFIL = Fe.pot. Alternatively, the **SPRKKR** programs may be called via **xbond**.

1.3.3 Files

The run of the **SPRKKR** programs **kkrscf**, **kkrgen**, **embscf**, **embgen**, **kkrchi** and **kkrspec** is controlled by a common input file. The information in this file is reduced to a minimum because most necessary data are supplied by the potential file.

The potential file contains all information on the geometrical and atomic configuration of a system as well as the atomic potentials to run a program. If a dummy potential file without potentials is created via **xband** it has the string SCF-START in the header. This file can

exclusively be used by **kkrscf** to start a SCF-cycle. **kkrscf** writes the new potential after every iteration to the new potential file SYS.pot_new.

The subroutine $\langle POTFIT \rangle$ reads the potential file and is able to import potential data from a number of other program packages as for example the Stuttgart TB-LMTO program. To supply data from other sources $\langle POTFIT \rangle$ can easily be extended. The minimum information to be supplied is described in the header of $\langle POTFIT \rangle$.

Information on the calculation and results are usually written to standard output but may be redirected to a file by:

or

```
kkrgen < Fe.inp > Fe.out
kkrgen < Fe.inp | tee Fe.out</pre>
```

In addition data files may be needed or created by **SPRKKR** programs. The file names of all these files are derived from the variables DATASET and ADSI specified in the input file (see 2).

1.3.4 The post-processing program plot

The program **plot** reads in data files created by **kkrgen** and writes the data reformated to a file that can be passed directly to the graphics program **xmgrace**. Where appropriate it reads parameters from a second input file used for example to broaden XAS raw spectra.

plot may be activated either by calling:

```
plot < Fe.dos
or by using xband.
```

2 The SPRKKR input file

2.1 Input Format

The input file is organised in various SECTIONS. The start of a section has to be indicated by writing the section name, starting at the first column of a line. Every section may contain information distributed over several lines. Every non-blank character - apart from the COMMENT CHARACTER (#) - in column 1 is assumed to belong to a new section name and therefore ends the current section - if this is not forced by the end of the file (EOF).

Normally, for each SECTION a number of VARIABLES have to be specified by assigning a string or number to it by typing VARIABLE=VALUE. For example in section SCF the statement ' VXC=VWN ' means that the Vosko, Wilk, Nusair XC-parametrisation is selected. There have to be a blank before VARIABLE and a blank after VALUE that both are recognised by the program (the blank after VALUE can be omitted at the end of a line). VARIABLE may be typed in upper or lower case. and VALUE may be a STRING, a REAL number or an INTEGER number.

If VALUE is a STRING it may be typed in upper or lower case. The program will convert to upper or lower case where necessary. Only the strings for the DATASET and the filenames are not touched by the program. The programs interprete the characters , ; () {} [] as separators and delimiters and therefore they must not be part of any STRING. These characters as well as the blank are assumed to indicate the beginning and end of a STRING. The program takes care that your strings are not too long.

If VALUE is a REAL number all formats that are accepted by format free input of a FORTRAN - program are allowed: 12, 1.34, .99, 1E-5 and so on.

If VALUE is an INTEGER number type an integer and nothing else.

Some VARIABLEs may have a set of values i.e. are ARRAYs. Again the values may be a STRING, a REAL number or an INTEGER number. To assign a value to the elements of the ARRAY just type ARRAY={VALUE1, VALUE2, VALUE3, ..} use {} to indicate the start and end of the value set. If no delimiter is used the program assumes that only one element is present although more could be used. Notice that if less values are supplied than expected, the program fills the array with the last value specified. Use blank, ',' or ';' to separate the

CHAPTER 2. THE SPRKKR INPUT FILE

VALUEs. The program takes care that you don't try to specify more elements than storage has been reserved and that your STRINGs are not too long.

Apart from VARIABLEs there are SWITCHes to be set. This is done just by typing them. If these SWITCHes do not occur in the input file, the DEFAULT value will be used. Some SWITCHes are stronger than others. Especially within SECTION TASK take care that just one switch is set.

The order of the VARIABLE=VALUE - and SWITCH - statements in a SECTION is arbitrary. However, if VAR=VALUE1 VAR=VALUE2 occurs, the first setting will be used.

All input text right to the COMMENT CHARACTER # is interpreted as comment. Lines starting with # are skipped.

Thus a typical input file may look like this:

```
*****
# SPR-KKR input file Fe.inp
# created by xband on Wed Jul 11 13:46:53 CEST 2001
**********
CONTROL DATASET = Fe
     POTFIL = Fe.pot
     PRINT = 0
STRCONST ETA= 0.35 RMAX=2.9 GMAX=3.3
     BZINT= POINTS NKTAB= 250
TAU
ENERGY NE=30 EMIN=-0.2
     NITER=200 MIX=0.20 SCFVXC=VWN
SCF
      TOL=0.00001 ISTBRY=1
     SCF
TASK
```

2.2 General Input Parameters

To run a **SPRKKR** program several variables have to be specified in the input file. For most of the variables/switches the programs have default values stored internally. These are given in the tables below. If the input file is set up via **xband**, it may suggest different values depending on the task. The input sections introduced in the following do not depend on a specific task. Those depending on the task are introduced later together with this task.

2.2.1 File names and output control

section CONTROL VAR / SWITCH default description

DATASET = string	-	name of data set used to create file names
ADSI = string	-	additional data set identifier (optional). This string is added to DATASET when creating file names and can be used to distinguish program runs done with different parameter settings etc.
POTFIL = string	-	name of potential file. The absolute or relative path, as e.g. POTFIL=/Fe.pot may be used.
PRINT = integer	0	print level 0-5. This parameter controls only the output but has no effect on the program run.

2.2.2 Angular momentum expansion

The KKR-method is a minimum basis set method. This means that the angular-momentum expansion can be chosen according to the atomic properties of the atomic types. For transition metals it is therefore normally sufficient to have a maximum *l*-value of 2 (NL = 3). For systems with many atoms per unit cell it is in principle possible to set the *l*-expansion according to the atom types on the lattice sites. For US having the NaCl-structure one could choose NL = 4 for the U-site and NL = 2 for the S-site. At the moment this possibility, that would save storage and computer time, is not supported by all subroutines. For this reason a common *l*-expansion cutoff is used, that is fixed by the highest that occurs. For US this implies that NL = 4 is used for all sites. The program fixes the angular momentum automatically to NL = 3 if transition metals are involved and to NL = 4 if rare earth or actinide atoms are in the system. A higher angular momentum cutoff can be obtained by setting the parameter NL within the section SITES. This is in particular important when dealing with MEXAFS at high energies.

section SITES

VAR / SWITCH	default	description
NL=integer	3 or 4	Common angular momentum cutoff parameter with $NL = l_{max} + 1$ preset according to the atomic types in the system

2.2.3 Calculating the scattering path operator

The scattering path operator τ can be calculated by a BZ-integration (see Eq. (1.7)) or the cluster approach; i.e., the real space KKR matrix is inverted (see Eq. (1.8)). The first approach

is used in **kkrscf**, **kkrgen**, **kkrchi** and **kkrspec**, while the later one is used by **embscf** and **embgen**.

section TAU VAR / SWITCH	default	description
BZINT=string	POINTS	mode of BZ-integration WEYL : Weyl method POINTS : special points method
NKMIN =integer	300	min. and max. number of \vec{k} -points
NKMAX=integer	500	for Weyl integration
NKTAB =integer	300	number of \vec{k} -points for special points method
CLUSTER	OFF	Cluster type calculation; i.e. calculate τ by inverting the real space KKR matrix. Specify cluster center using IQCNTR or ITCNTR and its size using NSHLCLU or CLURAD.
NSHLCLU=integer	-	number of atomic shells around the central atom of a cluster.
CLURAD =integer	-	radius of the cluster in multiples of ALAT.
IQCNTR =integer	-	the center of the cluster is set at the site position with number IQCNTR of the specified basis.
ITCNTR =integer	-	the center of the cluster is set at one of the site positions that is occupied by the atomic type ITCNTR.
NLOUT =integer	3	the calculated τ -matrix is printed up to $l_{max} = \text{NLOUT}.$
MOL	OFF	Cluster type calculation but for a molecular system. The system is specified as for CLUSTER.

The scattering path operator τ is usually calculated by a BZ-integration, with different methods available:

- The Weyl method (BZINT=WEYL) is a point sampling method using more or less random points. The number of \vec{k} -points used for the integration varies quadratically between 0.0 and ImE according to the imaginary part of the energy.
- The special point method (BZINT=POINTS) uses a regular \vec{k} -point grid with NKTAB points. It is the standard method and gives a good compromise concerning accuracy and efficiency. For BZINT=POINTS the parameter NKTAB will be adjusted to allow a regular mesh.

In all cases the \vec{k} -mesh specifications refer to the smallest possible irreducible part of the BZ; i.e. for cubic systems one has: $V_{IBZ} = V_{BZ}/48$.

Using the real space cluster approach by setting the switch CLUSTER is sometimes sufficient or more appropriate than performing a BZ-integration, e.g. when calculating EXAFS spectra for high energies. In both cases the same input files can be used. The major difference is that the BZ-integration treats an infinite solid while for the cluster mode a finite cluster is cut out of the infinite solid specified by the parameters NSHLCLU, CLURAD, IQCNTR and ITCNTR assumed to be big enough to represent the infinite solid. Using a BZ-integration the sitediagonal scattering operator τ^{qq} is calculated for all NT sites of the basis in the unit cell. For the cluster mode, only the scattering operator τ^{qq} for the center of the cluster is calculated, because the results will be the less bulk-representative the more one goes away from the center. Therefore, all information printed out for the other sites have to be ignored.

Setting the switch MOL a finite cluster of atoms; i.e. a molecule can be treated. In this case NQ is simply the number of atoms in the molecule. The atomic configuration is specified by the basis of an arbitrary lattice; i.e. the primitive lattice vectors are dummy input while ALAT specifies the dimensions of the system. While for CLUSTER the cluster atoms are embedded in a free electron sea, i.e. one deals with continuum states, it is assumed for MOL that one is dealing with bound electronic states. In contrast to CLUSTER the scattering operator τ^{qq} for all sites within the molecule is calculated properly.

2.2.4 \vec{k} -dependent KKR structure constants

section STRCONST

VAR / SWITCH default description

ETA=real	calculated	Ewald parameter
RMAX=real	calculated	convergency radius in real space
GMAX=real	calculated	convergency radius in reciprocal space

The calculation of the \vec{k} -dependent KKR structure constant matrix $\underline{G}(\vec{k}, E)$ is controlled by three convergence parameters. ETA determines the relative weight of the real and reciprocal space lattice sums, that are determined by the convergence radii RMAX and GMAX, respectively. These convergence parameters have to be optimised anew if the lattice structure, the lattice parameter or the energy or \vec{k} -range used is changed. This is done by the program if no values are applied via the input file. In some cases, in particular if one works at high energies, it might be necessery to set the convergence *by hand*. For this purpose one can start from the values set by **kkrgen** or **kkrscf** (see the output file).

2.2.5 CPA-calculations for disordered alloy systems

section CPA VAR / SWITCH	default	description	
NITER=integer	20	maximum number of CPA iterations	
TOL=real	0.0001	threshold for stopping CPA-cycle	

For a system with substitutional disorder, the CPA is used. The listed variables control the CPA cycle specified by Eqs. (1.9) and (1.10).

2.2.6 Calculation mode

If not specified otherwise the programs of the **SPRKKR**-package assume that a magnetic system should be treated in a fully relativistic way. By setting the parameter SP-SREL in the section MODE a scalar relativistic calculation can be done instead for a magnetic system. This is useful when starting the SCF-cycle (see below), because it is somewhat faster than the fully relativistic mode. Because in the SP-SREL-mode the same representation is used as for the fully relativistic one, all types of calculations described in the next chapters can be done in this mode.

 section MODE

 VAR / SWITCH
 default

 SP-SREL
 OFF

 work in the spin-polarized

 scalar-relativistic mode

If it is known that the system considered is non-magnetic, one can make use of this by setting the switch NONMAG.

section CONTROL VAR / SWITCH	default	description
NONMAG	OFF	perform a non-spin-polarized calculation for a paramagnetic system

This leads to a higher symmetry for the system and accordingly in general to shorter runtime for the SCF-cycle because a smaller part of the Brillouin-zone has to be sampled.

2.2.7 Orientation of the magnetisation

If magnetic systems are considered by the **SPRKKR** programs it is in general assumed that the magnetic moments of all atoms point parallel or antiparallel to the crystallographic *z*-axis. **SPRKKR** allows to consider different configurations as well. Using the parameter MDIR in section MODE the direction of the magnetisation can be oriented in an arbitrary direction. This implies that for all lattice sites the same orientation is assumed.

section MODE VAR / SWITCH	default	description
$\texttt{MDIR} = \{x, y, z\}$	$\{0, 0, 1\}$	Common magnetisation direction vector with x , y and z in Cartesian coordinates. The normalisation is arbitrary.

Internally, MDIR is converted to corresponding Euler angles (α, β, γ) (with γ redundant at the moment), that specify a local frame of reference. The Dirac equation for the single site problem is solved for this, because it reduces the spin dependent potential term in the Dirac equation to $\mu_B B_{eff}(r)\sigma_z$. Instead of using a common magnetisation direction for all lattice sites the direction may also be set individually for each lattice site (non-collinear spin structures). This is done using the parameter MDIR* (with * = 1, ..., NQ) in the section MODE.

section MODE VAR / SWITCH	default	description
$\texttt{MDIR}\star = \{x, y, z\}$	$\{0, 0, 1\}$	orientation vector for the spin magnetisation on the lattice site $*$, with $*$ standing for the site number IQ = 1,,NQ

2.2.8 Manipulating the spin-orbit coupling

When dealing with spin-orbit induced properties it is often interesting to demonstrate the connection of the investigated effect and the spin-orbit coupling. This can be done by manipulating the spin-orbit coupling. The **SPRKKR** package allows this in several ways [11, 12]. The most simple way to manipulate the spin-orbit coupling is to change the speed of light *c*. Because the most prominent relativistic corrections are proportional to $1/c^2$, one approaches the non-relativistic limit for *c* going to infinity. Accordingly, the **SPRKKR** input uses a scaling parameter $C \star = (c_0/c)^2$ (with $\star = 1, ..., NT$) that has to be put to small values for the non-relativistic limit (for numerical reasons one should have $C \star \ge 10^{-4}$), to 1 for a relativistic and > 1 for a ultra-relativistic calculation.

section MODE

LODE

CHAPTER 2. THE SPRKKR INPUT FILE

VAR / SWITCH	default	description
$C\star = \{real\}$	1.0	scale the speed of light for atom type *, with \star standing for $IT = 1,, NT$
The scheme descri scale exclusively t section MODE	ibed above obv he strength of	viously manipulates all relativistic effects simultaneously. To the spin-orbit coupling, one may use the parameter SOC*

VAR / SWITCH	default	description
$SOC \star = \{real\}$	1.0	scale the strength of the spin-orbit coupling for atom type \star standing for IT = 1,, NT

Setting SOC* = {0.0} suppresses the spin-orbit coupling completely and the calculation corresponds to a so-called scalar relativistic one. The parameter SOC* in addition allows to use only parts of the spin-orbit coupling. Setting SOC*= -1 only the spin-diagonal part $\xi \sigma_z l_z$ is used, while for SOC*= -2 only the spin-off-diagonal or spin-mixing part $\xi (\sigma_x l_x + \sigma_y l_y)$ is used in the calculations.

<u>3 Electronic structure calculations</u>

3.1 Creating self-consistent potentials

To perform SCF calculations using **kkrscf** an input and potential file has to be supplied. Setting up the input via **xband** a dummy potential file that supplies all information on the system without potential functions is created. (Alternatively, a potential file stemming from another band structure calculation can be used to start from.) **kkrscf** writes after every iteration the new potential functions to DATASET.pot_new, with DATASET.pot the name of the original potential file. Thus, to use the new potential file rename it to DATASET.pot or set POTFIL = DATASET.pot_new in the input files used later on.

The specific part of the input file DATASET.inp supplies the following parameters:

section TASK

VAR / SWITCH	default	description
SCF	ON	perform a SCF calculation
section SCF VAR / SWITCH	default	description
VXC =string	VWN	parametrisation of the exchange-correlation potential VWN: Vosko, Wilk, Nusair JWM: Janak, Williams, Moruzzi VBH: von Barth, Hedin
ALG=string	BROYDEN2	SCF algorithm TCHEBY : Tchebychev BROYDEN2: Broyden's second method

NITER=integer	200	number of iterations
MIX=real	0.20	SCF-mixing parameter
TOL =real ISTBRY =integer	0.00001 1	SCF-tolerance start Broyden after ISTBRY iterations
ITDEPT =integer	40	iteration depth for Broyden algorithm
$QION=\{Q_1,,Q_{NT}\}$	calculated	guess for the ionic charges Q_t for NT atomic types
$\texttt{MSPIN}=\{\mu_1,,\mu_{\texttt{NT}}\}$	table	guess for the spin magnetic moment $\mu_{spin,t}$ for NT atomic types
USEVMATT	OFF	set up the starting potential using the original Mattheiss construction for the potential <i>V</i> instead of the charge density

section ENERGY VAR / SWITCH	default	description
NE=integer	30	number of E-mesh points
EMIN=real	-0.15	real part of lowest E-value

If **kkrscf** is started using a dummy potential file created by **xband**, a reasonable guess for the potential is constructed first. By default this is done using a superposition of atomic charge densities (Mattheiss construction) and making use of the corresponding ionic charges. A guess for the ionic charges (QION) may also be supplied by the user to force the potential in a certain direction. Also the spin magnetic moment MSPIN may be supplied to force a certain spin configuration to start from – otherwise the elemental values for MSPIN will be assumed. As an alternative the Mattheiss construction may be applied for the potential directly by setting the switch USEVMATT . In this case it is only sensible to specify MSPIN in addition.

After setting up the starting potential, the Fermi energy is fixed by calculating the DOS along a straight path parallel to the real axis. The corresponding DOS is written to the file DATASET_SCFSTART.dos. Use **plot** to create from this file a corresponding **xmgrace** file. Check whether the DOS looks reasonable. If the DOS at the bottom of the energy window is not more or less 0, i.e. the bottom of the energy band should lie within the energy window, decrease EMIN and start again.

The SCF calculations are done using an energy path in the complex plane that is specified by the settings in the section ENERGY (see Fig. 3.1). The SCF convergence is checked after each

Figure 3.1: The various energy paths used for the SCF-calculations. The right part of each figure shows the electronic spectrum, while the left part shows a path in the complex energy plane; i.e. the distance from the vertical energy axis gives the imaginary part of the energy. The path shown on the right hand side runs parallel to the real axis and is used to fix the Fermi energy. The arc-like contour path in the complex energy plane is used for the energy integration.

iteration and the status is written to standard output. The first line after the *-line gives the SCF iteration number, the largest rms errors (among the various atom types IT) for V and B (to be compared with TOL), the new Fermi energy E_F , its correction, the DOS at E_F and the total spin and orbital magnetic moments.

CHAPTER 3. ELECTRONIC STRUCTURE CALCULATIONS

The convergence behavior may be checked by piping the output to a file DATASET.out and using the Unix command grep " ERR " DATASET.out. If convergence is achieved or the maximum number of iterations (NITER) is exhausted **kkrscf** stops. In the later case one can restart from the new potential file (see above). If there are problems with the convergence, one should first decrease the mixing parameter MIX. Using simple mixing at the beginning of the SCF cycle, may also help (increase ISTBRY).

Files used:

Filename	unit	I/O	description
DATASET.inp	5	Ι	input file described above
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$. This file is created via xband or stems from a previous run of kkrscf .
DATASET.pot_new	4	0	The new output potential is written after each SCF-iteration in $\langle MAIN \rangle$ of $kkrscf.$
DATASET_SCFSTART.dos	10	Ο	DOS for a path parallel to real axis for 0-th SCF- iteration if kkrscf starts from scratch (only for checking purposes). Opened in \langle SCFINITPOT \rangle and written by \langle CALCDOS \rangle .
DATASET_ATOM.inf	8	Ο	Created if IPRINT \geq 1: information on the atomic type calculations done to set up a guess for the charge density if kkrscf starts from scratch (only for checking purposes). Opened in (SCFINITPOT) and written by Desclaux core routines.

NOTE

The dummy potential file DATASET.pot can be used exclusively by **kkrscf**. After each SCF iteration the new potential is written to the output potential file DATASET.pot_new. This means in particular that **kkrscf** can be restarted if problems occurred after copying the file DATASET.pot_new to DATASET.pot. After the SCF convergence has been reached copy DATASET.pot_new to DATASET.pot. For all examples following section 3.1 it will be assumed that a SCF potential is available in the file DATASET.pot.

Example

Running **kkrscf** for the ordered compound FeCo in the CsCl-structure ($a \approx 5.365$) the input file created by **xband** should look like that:

```
*****
# SPR-KKR input file FeCo_SCF.inp
# created by xband on Sat Jan 15 18:46:13 CET 2005
******
CONTROL DATASET = FeCo
     ADSI
           = SCF
     POTFIL = FeCo.pot
     PRINT = 0
     BZINT= POINTS NKTAB= 250
TAU
ENERGY GRID={5} NE={30}
     EMIN=-0.2 ImE=0.0 Ry
     NITER=200 MIX=0.20 VXC=VWN
SCF
     TOL=0.00001 MIXOP=0.20 ISTBRY=1
```

As a first step **kkrscf** always creates a guess for the potential. Then the corresponding Fermi energy is determined from a DOS calculation for an energy path running parallel to the real energy axis until the required number of valence electrons is found, i.e. until the Fermi energy is reached. The DOS (with the energy given with respect to the muffintin zero) is written to the file FeCo_SCF_SCFSTART.dos and can be viewed using **plot** via **xband**. For the present example one gets the three files FeCo_SCF_SCFSTART.dos.agr, FeCo_SCF_SCFSTART.dos_Co.agr, and FeCo_SCF_SCFSTART.dos_Fe.agr, that give the total and partial DOS and that can be viewed by invoking **xmgrace**. As an example the component resolved DOS of FeCo and the corresponding partial DOS of Fe is shown in Fig. 3.2. Although the DOS is calculated for a non-self-consistent potential it should nevertheless look *reasonable*. In general the guess potential is quite good as can be seen from the DOS in SYSTEM_SCF_START.dos looks *unreasonable* one should try to influence the set up of the guess for the potential – in particular to enforce a small charge transfer.

During the SCF-iterations one can monitor the progress by grepping the string "ERR" in the output file FeCo_SCF.out. This can be done via **xband** using the out-file menu giving the following table:

####	* # # # # # # # # # # # # #	#########	+ # # # #	#######	+ # # # # # # # # ;	####	+ # #			
###	executing the	unix comma	and:	grep "EH	RR" FeCo_S	SCF.	out			
####	***	#########	+ # # # #	#######	+ # # # # # # # # #	####	###			
###	Wait for the m	nessage	EXE	CUTION (COMPLETED	#	###			
###	stop execution	n using rea	i s	TOP but	ton	#	###			
###	or <control-< td=""><td>c> in outp</td><td>out f</td><td>ield</td><td></td><td>#</td><td>###</td><td></td><td></td><td></td></control-<>	c> in outp	out f	ield		#	###			
####	* * * * * * * * * * * * * * * *	#########	####	######	+ # # # # # # # # #	####	###			
1	ERR 0.646E+00	0.904E-01	EF	0.76638	0.01562	D	22.501	М	4.2321	0.1270
2	ERR 0.195E+01	0.133E+00	EF	0.77586	0.00948	D	27.758	М	4.1812	0.1369
3	ERR 0.105E+00	0.780E-01	EF	0.77433	-0.00152	D	39.760	М	4.1708	0.1288
4	ERR 0.781E-01	0.672E-01	EF	0.77541	0.00108	D	33.596	М	4.2027	0.1302
5	ERR 0.195E-01	0.330E-01	EF	0.77989	0.00448	D	27,410	М	4.2976	0.1307

Figure 3.2: The component resolved DOS (left) and the spin and angular momentum resolved partial DOS of Fe (right) in FeCo for a starting potential created by guess.

6	ERR	0.299E-02	0.180E-01	EF	0.78127	0.00137	D	30.354	М	4.3421	0.1309
7	ERR	0.200E-02	0.105E-01	EF	0.78212	0.00085	D	29.733	М	4.3650	0.1308
8	ERR	0.517E-02	0.187E-02	EF	0.78340	0.00128	D	28.407	М	4.3906	0.1306
9	ERR	0.446E-02	0.211E-02	EF	0.78377	0.00037	D	28.911	М	4.4001	0.1306
10	ERR	0.292E-02	0.144E-02	EF	0.78358	-0.00019	D	29.675	М	4.3956	0.1306
11	ERR	0.326E-02	0.121E-02	EF	0.78370	0.00012	D	29.302	М	4.3977	0.1305
12	ERR	0.296E-02	0.113E-02	EF	0.78374	0.00004	D	29.330	М	4.3984	0.1305
13	ERR	0.240E-02	0.424E-03	EF	0.78407	0.00034	D	28.731	М	4.4037	0.1305
14	ERR	0.128E-02	0.202E-03	EF	0.78416	0.00009	D	28.822	М	4.4047	0.1305
15	ERR	0.579E-03	0.140E-03	EF	0.78414	-0.00002	D	28.935	М	4.4042	0.1305
16	ERR	0.230E-03	0.801E-04	EF	0.78414	0.00000	D	28.911	М	4.4043	0.1305
17	ERR	0.277E-04	0.374E-04	EF	0.78415	0.00001	D	28.908	М	4.4043	0.1305
18	ERR	0.451E-04	0.361E-04	EF	0.78415	0.00000	D	28.912	М	4.4043	0.1305
19	ERR	0.459E-04	0.341E-04	EF	0.78415	0.00000	D	28.912	М	4.4043	0.1305
20	ERR	0.444E-04	0.321E-04	EF	0.78415	0.00000	D	28.912	М	4.4043	0.1305
21	ERR	0.112E-04	0.416E-05	EF	0.78415	0.00000	D	28.912	М	4.4043	0.1305
22	ERR	0.706E-05	0.155E-05	EF	0.78415	0.00000	D	28.914	М	4.4043	0.1305
####	+ # # # #	+ # # # # # # # # # # #	+ # # # # # # # # # #	+ # # # #	+ # # # # # # # #	+ # # # # # # # # #	# # # :	###			
###		EXE	ECUTION CON	4PLE1	ſED		÷	###			
####	* * * * * * * * * * * * * * * * * * * *										

The various columns give the iteration number, the errors in the potential functions V and B (ERR), the Fermi energy E_F and its correction (EF), the total DOS $n(E_F)$ at the Fermi energy (D) and the total spin and orbital magnetic moments (M). If the variations are too wild, in particular if ERR does not decrease in the average, reduce the mixing parameter. The information extracted via grep is also written to the file FeCo_SCF.log to allow a direct graphical display using e.g. **Xmgrace**. For that reason, the decadic logarithm of the errors in the potential functions V and B (RMSAVV and RMSAVB corresponding to ERR) is tabulated. For the settings used in the example the SCF-cycle for FeCo is converged after 22 itera-

tions. After convergence the following final result is written to the end of the output file FeCo_SCF.out:

```
SPRKKR-run for: FeCo
results extrapolated to corrected FERMI - ENERGY:
CHARGE MISFIT 0.00000
E_F CORRECTION
                         0.00000
NEW FERMI ENERGY 0.78415
                                     extrapolated

      31 E= 0.7842 0.0000
      IT= 1 Fe

      DOS
      NOS
      P_spin
      m_spin
      P_orb
      m_orb
      B_val
      B_core

      s
      0.3690
      0.6415
      0.1235
      0.0011
      -0.00001
      0.00000
      44.12 s
      -292.28

      p
      0.5234
      0.8120
      0.3016
      -0.0409
      0.00501
      0.00070
      1.16 ns
      1.24

      d
      16.1427
      6.5122
      -13.0394
      2.7266
      0.41423
      0.05753
      21.98 cor -291.04

      sum
      17.0351
      7.9657
      -12.6143
      2.6868
      0.41923
      0.05823
      67.26 v+c
      -223.78

 31 E= 0.7842 0.0000
                                IT= 1 Fe
E band
                 4.52188022 [Ry]
                                                _____
31 E= 0.7842 0.0000 IT= 2 Co

DOS NOS P_spin m_spin P_orb m_orb B_val B_core

s 0.3585 0.6623 0.0079 -0.0060 0.00000 0.00000 -16.01 s -194.18

p 0.9308 0.7984 -0.0566 -0.0415 0.01734 0.00019 0.69 ns 0.90

d 10.5895 7.5737 -8.1270 1.7651 -0.40534 0.07207 43.77 cor -193.28

sum 11.8787 9.0343 -8.1756 1.7176 -0.38801 0.07226 28.44 v+c -164.83
E_band 5.19735929 [Ry]
 TOT 28.9139 17.0000
                                          4.4043
                                                                  0.13049
                 9.71923951 [Ry]
E band
_____
setting up new potential in <SCFNEWPOT>

        IT
        JTOP
        Z
        QEL
        DQT
        DVCT
        IQ
        DQQ
        VMAD

        1
        721
        26
        25.96567
        -0.03433
        0.00000
        1
        -0.03433
        0.02605

        2
        721
        27
        27.03433
        0.03433
        0.00000
        2
        0.03433
        -0.02605

     TT JTOP
                             -5323.51256145
     total energy
shift of muffin-tin zero VMTZ -0.789846
rms-error for type 1: V = 2.6516D-06 B = 1.3912D-06
rms-error for type 2: V = 7.0629D-06 B = 1.5496D-06
                      average: V = 7.0629D-06
     iter. 22
                                                           B = 1.5496D-06
     execution time for last iteration
                                                  202.740 secs
22 ERR 0.706E-05 0.155E-05 EF 0.78415 0.00000 D 28.914 M 4.4043 0.1305
ETOT -5323.51256145 SCF - cycle converged !!!!!!!!
```

3.2 Phase shift $\delta_{\kappa}(E)$

The calculation of the phase shift $\delta_{\kappa}(E)$ and the corresponding logarithmic derivative $D_{\kappa}(E)$ can be used for checking the potential, to get average values for the spin orbit and exchange splitting parameters and to get an overview for the range of bands (e.g. 3d–4d–5d). Although the phase shift concept can be applied also for the spin polarized relativistic case, leading to a corresponding matrix $\delta_{\Lambda\Lambda'}(E)$, this is not done here. Instead, the phase shift $\delta_{\kappa}(E)$ is first calculated ignoring the exchange splitting and then ignoring the spin orbit splitting.

To calculate the phase shift run **kkrgen** with an input and potential file supplied. The specific part of the input file DATASET.inp supplies the following parameters:

section TASK

VAR / SWITCH	default	description
PSHIFT	OFF	Calculate the phase shifts $\delta_{\kappa}(E)$ and logarithmic derivative $D_{\kappa}(E)$ for all atom types IT in the system.
section ENERGY VAR / SWITCH	default	description
NE=integer EMIN=real EMAX=real	100 0.0001 1.0	number of E-mesh points lowest E-value highest E-value

If there is a resonance in the d- or f-chanel for energies below 1 Ry, the exchange and spinorbit splitting parameters are written by **kkrgen** to standard output. These values represent energy independent average values. For the energy dependent spin-orbit splitting parameter see section 3.4. The energy dependent phase shift and logarithmic derivative are written to files, that can be used directly by **xmgrace**.

Files used:

Filename

unit I/O description

DATASET.inp	5	Ι	input file described below
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET_pshift_AT.agr	7	0	phase shift $\delta_{\kappa}(E)$ for the atom type AT written by $\langle PSHIFT \rangle$ and formatted for viewing directly with xmgrace
DATASET_logdrv_AT.agr	7	0	logarithmic derivative $D_{\kappa}(E)$ for the atom type AT written by $\langle PSHIFT \rangle$ and formatted for viewing directly with xmgrace

Example

To calculate the phase shifts $\delta_{\kappa}(E)$ and the corresponding logarithmic derivatives $D_{\kappa}(E)$ for the ordered compound FeCo in the CsCl-structure the input file created by **xband** should look like this:

The file FeCo.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the phase shifts $\delta_{\kappa}(E)$ will be written to the files FeCo_PSHIFT_pshift_Fe.agr and FeCo_PSHIFT_pshift_Co.agr, while the logarithmic derivatives $D_{\kappa}(E)$ will be written to FeCo_PSHIFT_logdrv_Fe.agr and FeCo_PSHIFT_logdrv_Co.agr, respectively. These files can be viewed directly using **xmgrace**, i.e. there is no need for post-processing. As an example the phase shift and logarithmic derivatives of Fe in FeCo is shown in Fig. 3.3.

If the phase shift $\delta_{\kappa}(E)$ shows a resonance, as it is typical for d-electrons (l = 2) of transition metals, an average value for the exchange and spin-orbit splittings, ΔE_{xc} and ΔE_{so} , respectively, are determined and printed to the output file.

IT= 1 Fe
phase shift written to the file FeCo_PSHIFT_pshift_Fe.agr
deduced from the resonance with E_res < 1 Ry for 1 = 2
SO-splitting 0.01092 Ry 0.14854 eV</pre>

23

Figure 3.3: The phase shifts $\delta_{\kappa}(E)$ and the corresponding logarithmic derivatives $D_{\kappa}(E)$ of Fe in the ordered compound FeCo.

```
XC-splitting 0.18428 Ry 2.50724 eV
log. deriv. written to the file FeCo_PSHIFT_logdrv_Fe.agr
IT= 2 Co
phase shift written to the file FeCo_PSHIFT_pshift_Co.agr
deduced from the resonance with E_res < 1 Ry for 1 = 2
SO-splitting 0.01354 Ry 0.18416 eV
XC-splitting 0.12236 Ry 1.66474 eV
log. deriv. written to the file FeCo_PSHIFT_logdrv_Co.agr
```

3.3 Plotting of wave functions

The valence band and core level wave functions used by the **SPRKKR** package may be ploted using **kkrgen**. The specific part of the input file DATASET.inp supplies the following parameters:

section TASK

VAR / SWITCH default description

CHAPTER 3. ELECTRONIC STRUCTURE CALCULATIONS

SOCPAR	OFF	Calculate the spin-orbit-splitting parameters
		$\xi_l(E)$ as a function of the energy <i>E</i> for all atom types IT in the system.
WFPLOT	OFF	plot wave functions
IT	1	select atom type IT
STATE	BAND	BAND: valence band
		CORE: core level
L		s, p, d,like wave function for STATE=BAND
CL		1s, 2s, 2p,like wave function for
		STATE=CORE
mj	+1/2	+1/2, -1/2, +3/2, -3/2, m_j -character of wave
		function

section ENERGY

VAR / SWITCH	default	description
NE=integer	1	number of E-mesh points
EMIN=real EMAX=real	0.5 0.5	lowest E-value highest E-value

The energy dependent spin-orbit-splitting parameters $\xi_l(E)$ are written to files, that can be used directly by **xmgrace**.

Files used:

Filename	unit	I/O	description
DATASET.inp	5	Ι	input file described below
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET_*_AT.agr	7	Ο	data file for valence band or core wave functions, that can directly be viewed with xmgrace

Example

The input file to plot the d-like wave functions of Fe in FeCo should look like this:

```
******
 SPR-KKR input file FeCo_WFPLOT.inp
 created by xband on Sat Jan 22 17:45:12 CET 2005
**********
CONTROL DATASET = FeCo
      ADSI = WFPLOT
POTFIL = FeCo.pot
      PRINT = 0
      GRID={3} NE={1}
ENERGY
             EMAX=0.5
                     ImE=0.0 Ry
      EMIN=0.5
TASK
      WFPLOT
             IT=1 (Fe)
      STATE=BAND L=d mj=+1/2
                           # E taken from [ENERGY]
      STATE=CORE CL=2p mj=+1/2
#
```

The run of **kkrgen** creates the wave function files to be viewed directly via **xmgrace**. A run with the input file shown above and a second one for the 2p-core levels leads to the results shown in Fig. 3.4.

Figure 3.4: The valence band d-electron (left) and 2p-core state (right) wave function for Fe in FeCo. The core wave functions have been created in a second run of **kkrgen**.

3.4 Spin-orbit parameter

The spin-orbit-splitting parameter $\xi_l(E)$ depends on the energy *E* and can be calculated *l*-resolved using **kkrgen** with an input and potential file supplied. The specific part of the input file DATASET.inp supplyies the following parameters:

section TASK

VAR / SWITCH	default	description
SOCPAR	OFF	Calculate the spin-orbit-splitting parameters $\xi_l(E)$ as a function of the energy E for all atom types IT in the system.
section ENERGY		
VAR / SWITCH	default	description
NE-intogor	100	number of F. mesh points
	100	
EMIN=real	0.0001	lowest E-value
EMAX=real	1.0	highest E-value

The energy dependent spin-orbit-splitting parameters $\xi_l(E)$ are written to files, that can be used directly by **xmgrace**.

Files used:

Filename	unit	I/O	description
DATASET inn	5	T	input file described below
DATASET.pot	4	I	input potential read in by (POTFIT).
DATASET_soc_AT.agr	7	0	spin-orbit-splitting parameters $\xi_l(E)$ for the atom type AT written by $\langle \text{SOCPAR} \rangle$ and formatted for viewing directly with xmgrace

Example

To calculate the spin-orbit-splitting parameter $\xi_l(E)$ for the ordered compound FeCo the input file created by **xband** should look like this:

```
**********
  SPR-KKR input file
                FeCo_SOCPAR.inp
  created by xband on Mon Jan 17 22:05:32 CET 2005
*****
                                   ********************
CONTROL DATASET = FeCo
           = SOCPAR
      ADST
      POTFIL = FeCo.pot
      PRINT = 0
ENERGY
      GRID={3} NE={100}
      EMIN=0.0001 EMAX=1.0
                      ImE=0.0 Ry
TASK
      SOCPAR
```

The file FeCo.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the energy-dependent spin-orbit-splitting parameter $\xi_l(E)$ will be written to the files FeCo_SOCPAR_soc_Fe.agr and FeCo_SOCPAR_soc_Co.agr. In addition an effective energy-dependent exchange splitting ΔE_{xc} is written to the files FeCo_SOCPAR_exc_Fe.agr and FeCo_SOCPAR_exc_Fe.agr and FeCo_SOCPAR_exc_Co.agr. All these files can be viewed directly using **xmgrace**, i.e. there is no need for post-processing. As an example the spin-orbit-splitting parameter of Fe in FeCo is shown in Fig. 3.5.

Figure 3.5: The energy dependent spin-orbit-splitting and exchange splitting parameters $\xi_l(E)$ and ΔE_{xc} , repectively, for p- and d-electrons of Fe in FeCo.

3.5 Dispersion relation $E(\vec{k})$

To calculate the dispersion relation $E(\vec{k})$ use **kkrgen** with an appropriate input and potential file. The specific part of the input file supplies the following parameters:

section TASK VAR / SWITCH	default	description
EKREL	OFF	Calculate the dispersion relation $E(\vec{k})$ for an ordered system.
EMIN=real	-0.1	energy range for
EMAX=real	1.0	$E(\vec{k})$ relation
NE =integer	1000	number of E-points – fixes tolerance for $E(\vec{k})$
NK=integer	51	total number of \vec{k} -points
KPATH =integer	-	predefined path in \vec{k} -space see table 3.1
NKDIR =integer	1	directions in \vec{k} -space treated
$KA \star = \{x, y, z\}$	{0,0,0}	first and last $ec{k}$ -vector for segment \star
$\text{KE} \star = \{x, y, z\}$	{1,0,0}	in \vec{k} -space in multiples of $2\pi/a$ and rectangular coordinates with $\star = 1,, NKDIR$

The dispersion relation $E(\vec{k})$ is calculated for an energy range fixed by the variables EMIN and EMAX with the accuracy determined by the energy step (EMAX-EMIN) / (NE-1). There are two ways to specify the corresponding path in \vec{k} -space:

- select a predefined path by using the variable KPATH. See the list above for the available settings.
- specify the number NKDIR of segments of a user defined path and give for all segments the first and last \vec{k} -vectors.

kkrgen determines the dispersion relation $E(\vec{k})$ from the number N(E) of positive eigen values of the KKR-matrix. For are given $\vec{k} N(E)$ is calculated for every energy value of the mesh specified by NE, EMIN, and EMAX. An energy eigen value is indicated by a change in N(E) for increasing *E*. **kkrgen** uses the constant-E mode to calculate the dispersion relation. This may lead to rather long execution times.

kkrgen writes the result to a file DATASET.bnd. Use **plot** to convert the data to a **xmgrace** file.

Files used:

Bravais lattice	KPATH	path
orb	1	Γ - Σ -X-G-U-A-Z- Λ - Γ - Δ -Y-H-T-B-Z
		+ X-D-S-C-Y + U-P-R-E-T + S-Q-T
	2	Γ - Σ -X-G-U-A-Z- Λ - Γ - Δ -Y-H-T-B-Z
	3	Γ - Σ -X-G-U-A-Z- Λ - Γ
	4	Γ - Δ -Y-H-T-B-Z
hex	1	Γ - Σ -M-T'-K-T- Γ - Δ -A-R-L-S'-H-S-A
		+ M-U-L + K-P-H
	2	Γ - Σ -M-T'-K-T- Γ - Δ -A-R-L-S'-H-S-A
	3	Γ - Σ -M-T'-K-T- Γ - Δ -A
	4	Γ - Σ -M
	5	К-Т-Г
SC	1	Γ - Δ -X-Y-M-V-R- Λ - Γ - Σ -M
	2	Γ - Δ -X-Y-M-V-R- Λ - Γ
	3	Γ - Δ -X-Y-M-V-R
	4	Γ - Δ -X-Y-M
fcc	1	X- Δ -Γ- Λ -L-Q-W-N-K- Σ -Γ
		+ L-M-U-S-X-Z-W-D-U
	2	X- Δ -Γ- Λ -L-Q-W-N-K- Σ -Γ
	3	$X-\Delta-\Gamma-\Lambda-L$
	4	Γ-Δ-Χ
	5	Γ - Λ -L
bcc	1	Γ -D-H-G-N- Σ - Γ - Λ -P-F-H + N-D-P
	2	Γ -D-H-G-N- Σ - Γ - Λ -P-F-H
	3	Γ-D-H-G-N-Σ-Γ-Λ-Ρ
	4	Γ -D-H-G-N- Σ - Γ
	5	Г-D-Н

Table 3.1: Parameter KPATH used to specify various paths in \vec{k} -space for the different Bravais lattices.

Filename	unit	I/O	description
DATASET.inp DATASET.pot DATASET.bnd	5 4 10	I I O	input file described below input potential read in by $\langle POTFIT \rangle$. dispersion relation $E(\vec{k})$ together with information
		-	on the path in \vec{k} -space. Use plot to obtain the corresponding xmgrace file.

Example

To calculate the density of states for the ordered compound FeCo the input file created by **xband** should look like this:

The file FeCo.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the density of states data will be written to the file FeCo_DOS.dos. The content of the file can be viewed using **plot** via **xband**. For the present example one gets the three files FeCo_DOS.dos.agr, FeCo_DOS.dos_Co.agr, and FeCo_DOS.dos_Fe.agr, that give the total and partial DOS and that can be viewed by invoking **xmgrace**. As an example the partial DOS of Fe is shown in Fig. 3.9. Note that the energy range is given in the input file in

Figure 3.6: The dispersion relation $E(\vec{k})$ of FeCo for the wave vector \vec{k} along the path $\Gamma - X - M$.

units of Ry with respect to the muffin-tin zero. For the display of the DOS the energy range is converted to eV with respect to the Fermi energy, i.e. E = 0 corresponds to $E = E_F$.
3.6 Bloch spectral function $A_B(E, \vec{k})$

The Bloch spectral function $A_B(E, \vec{k})$ can be seen as a \vec{k} -resolved DOS function [13]. For an ordered system it is a δ -like function, that carries the same information as the dispersion relation $E(\vec{k})$. Calculating $A_B(E, \vec{k})$ for an ordered system at complex energies is therefore on alternative way to represent $E(\vec{k})$, with a broadening according to the imaginary part of E. For a disordered systems $E(\vec{k})$ is not well defined, while $A_B(E, \vec{k})$ can still be used to represent the electronic band structure. The Bloch spectral function $A_B(E, \vec{k})$ is obtained by running **kkrgen** with appropriate potential and input files. The specific part of the input file DATASET.inp supplyies the following parameters:

section TASK

VAR / SWITCH	default	description	
BLOCHSF	OFF	Calculate the Bloch spectral function $A_B(E, \vec{k})$.	
section ENERGY			
VAR / SWITCH	default	description	
NE=integer	-	number of E-mesh points	
EMIN=real EMAX=real	-	lowest E-value highest E-value	
ImE=real	0.01	imaginary part of E	
NK=integer	51	total number of \vec{k} -points	
KPATH =integer	-	predefined path in \vec{k} -space. See section 3.5 for a list of available settings.	
NKDIR =integer	1	directions in \vec{k} -space treated	
$KA \star = \{x, y, z\}$	{0,0,0}	first and last $ec{k}$ -vector for segment \star	
$\text{KE} \star = \{x, y, z\}$	{1,0,0}	in \vec{k} -space in multiples of $2\pi/a$ and rectangular coordinates with $* = 1,, NKDIR$	
NK1=integer	-	number of \vec{k} -vectors along \vec{k}_1 .	
NK2=integer	-	number of \vec{k} -vectors along \vec{k}_2 .	
K1={x,y,z}	{1,0,0}	first \vec{k} -vector to span a two-dimensional region in \vec{k} -space	

CHAPTER 3. ELECTRONIC STRUCTURE CALCULATIONS

K2={x,y,z} {0,1,0} second \vec{k} -vector to span a two-dimensional region in \vec{k} -space

The Bloch spectral function $A_B(E, \vec{k})$ may be calculated for:

- a certain range of the energy *E* along a path in \vec{k} -space. In this case the input parameters are chosen as for the calculation of the dispersion relation $E(\vec{k})$. The energy mesh is specified by the parameters NE, EMIN, and EMAX, while there are two ways to specify the corresponding path in \vec{k} -space:
 - select a predefined path by using the variable KPATH. See the list above for the available settings.
 - specify the number NKDIR of segments of a user defined path and give for all segments the first and last \vec{k} -vectors.
- a fixed energy *E* and a rectangular region in *k*-space. In this case the region is specified via two spanning vectors K1 and K2 with NK1 and NK2 grid points along *k*₁ and *k*₂. Typically the energy is set to the Fermi energy *E_F* leading to a cut through the Fermi surface.

Calculation of the Bloch spectral function $A_B(E, \vec{k})$ for real energies is sensible only for systems with chemical disorder, that usually are treated using the CPA. In this case the CPA equations has to be solved first for the required energy mesh. The resulting CPA scattering path operator $\tau^{CPA}(E)$ and the inverse of the corresponding single site t-matrix $(t^{CPA}(E))^{-1}$ will be stored in a file DATASET.tau. Ordered systems can be treated by working at complex energies (set ImE to a finite value).

Files used:

Filename	unit	I/O	description
DATASET.inp	5	Ι	input file described below
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET.tau	9	I/O	contains the non-vanishing elements of the site- dependent scattering path operator matrix $\tau_{\Lambda\Lambda'}^q$ and inverse site t-matrix $(t^q(E))_{\Lambda\Lambda'}^{-1}$ for the specified en- ergy grid. Written in (PROJTAU).
DATASET.bsf	10	0	Bloch spectral function $A_B(E, \vec{k})$ together with information on the energy and \vec{k} range. Use plot to obtain a corresponding graphics file. Because xm - grace cannot handle 3D-graphics output is generated for the alternate graphics program plotmtv and xmatrix .

Example

To calculate the spin-resolved Bloch spectral function (BSF) for bcc-Fe the input file created by **xband** should look like this:

```
*****
               Fe_BLOCHSF.inp
 SPR-KKR input file
 created by xband on Thu Jun 2 16:02:14 CEST 2005
*****
CONTROL DATASET = Fe
     ADSI
          = BLOCHSF
     POTFIL = Fe.pot
     PRINT = 0
     BZINT= POINTS NKTAB= 250
TAU
ENERGY
     GRID={3} NE={260}
     EMIN=-0.2 EMAX=1.0
                    ImE=0.001 Ry
TASK
     BSF
           KPATH = 5
     NK = 260
```

The file Fe.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the BSF will be written to the file Fe_BLOCHSF.bsf, which then can be visualised using **plot** from within **xband**.

Figure 3.7: Spin-up (left) and spin-down (right) BSF for bcc-Fe.

Furthermore, one can also calculate different cuts through Fermi surfaces. For this, the **xband** created inputfile should look like this:

```
******
# SPR-KKR input file Fe_FERMI.inp
 created by xband on Fri Jun 3 13:45:34 CEST 2005
******
CONTROL DATASET = Fe
         = BLOCHSF
     ADST
     POTFIL = Fe.pot
     PRINT = 0
     BZINT= POINTS NKTAB= 250
TAU
ENERGY
     GRID={3} NE={1}
     EMIN=0.7458405583
                   EMAX=0.7458405583
                                ImE=0.001 Ry
TASK
     BSF
     NK1 = 260
             K1 = \{1.0, 0.0, 0.0\}
     NK2 = 260 K2 = \{0.0, 1.0, 0.0\}
```

Note, that the parameters EMIN and EMAX must be set to the Fermi energy which is obtained from the converged potential file. created by **kkrscf**. Running **kkrgen** the data will be written to the file Fe_BLOCHSF.bsf, which then can be visualised using **plot** from within **xband**.

Figure 3.8: Cut by Γ -H× Γ -H-plane through the Fermi surface of bcc-Fe. Spin-up and spindown BSF are shown on the left and right panels, respectively.

3.7 Density of States n(E)

To calculate the angular momentum, spin and component resolved density of states (DOS) n(E) run **kkrgen** supplying an input and potential file. In addition the κ -resolved DOS and the spin and orbital polarizations, P_spin= $d\langle \sigma_z \rangle/dE$ and P_orb= $d\langle l_z \rangle/dE$, can be obtained.

The specific part of the input file DATASET.inp supplyies the following parameters:

section TASK VAR / SWITCH default description Calculate the DOS ON DOS section ENERGY VAR / SWITCH default description 100 number of E-mesh points NE=integer EMIN=real -0.2 real part of lowest E-value EMAX=real 1.2 real part of highest E-value ImE=real 0.01 imaginary part of E

See Fig. 3.1 for a graphical representation of the various paths in the complex energy plane. **section CONTROL**

VAR / SWITCH	default	description
WRKAPDOS WRPOLAR	OFF OFF	write l - and κ -resolved DOS write spin- and orbital polarization
WRTAU	OFF	write τ -matrix τ_t projected for all components IT of the system to file DATASET.tau for later use
WRTAUMQ	OFF	write τ -matrix τ_q and inverse <i>t</i> -matrix m_q for all sites IQ of the system to file DATASET.tau for later use

CHAPTER 3. ELECTRONIC STRUCTURE CALCULATIONS

34 E=	0.4061 0.01	00	IT= 1 Ti			
	DOS	[1/Ry]	m_spin [m_B]	m_orb	[m_B]	B_tot [kG]
INT(DE)	crystal	1.814	0.771		0.009	1056.0
TOTAL	crystal	3.641	0.099		0.064	3661.1
INT(DE)	backscat.	-0.317	-0.734		0.014	-1862.1
TOTAL	backscat.	-0.689	-0.548		0.046	3567.5

kkrgen writes the following information to standard output:

This block is printed for every energy and component IT and gives the DOS, spin-polarization P_spin= $d\langle \sigma_z \rangle/dE$, orbital polarization P_orb= $d\langle l_z \rangle/dE$, and valence band hyperfine field in their integrated (INT (DE)) and differential form. The full values (crystal) as well as their back scattering parts are given separately. These are obtained from Eq. (1.11) by ignoring the second irregular part and replacing $\tau_{\Lambda\Lambda'}^{nn'}(E)$ by $\tau_{\Lambda\Lambda'}^{nn'}(E) - t_{\Lambda\Lambda'}^n(E)$. For IPRINT ≥ 1 a decomposition according to the magnetic quantum number μ is given in addition.

kkrgen stores the calculated DOS in the file DATASET.dos. Use **plot** to convert the data and write them to **xmgrace**-compatible files *dos*.agr. The program **plot** creates for every component IT of a system a file with its *l*- and spin resolved DOS. For a multi-component system in addition a file with the total concentration weighted DOS curves is created.

Calculating the DOS or, equivalently, the scattering path operator τ using a BZ-integration, a finite imaginary part of the energy has to be used. The smaller ImE the denser the \vec{k} -mesh has to be, to get smooth DOS curves. A cluster calculation, on the other hand, can be done for a vanishing ImE. However, the cluster size has to be the larger the smaller ImE is to achieve convergency.

For checking the potential it is often helpful to calculate the single site DOS (obtained by replacing τ by t). This avoids a lengthy BZ-integration and can be achieved by setting BZINT=WEYL, NKMIN=0, and NKMAX=0 in section KMESH.

Files used:

Filename	unit	I/O	description
DATASET.inp	5	Ι	input file described below
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET.dos	10	0	angular momentum, spin and component resolved DOS formatted to be passed to plot , that creates corresponding xmgrace -compatible files.
DATASET.kap	13	0	If WRKAPDOS has been set: <i>l</i> - and κ - and component-resolved DOS, i.e., s-, p-, d-,, s _{1/2} -, p _{1/2} -, p _{3/2} -, like DOS for the speci- fied energy grid written in (CALCDOS). Use plot to convert the data and write them to xmgrace - compatible files *kapdos*.agr.

DATASET.pol	14	0	If WRPOLAR has been set: spin- and orbital polarization for the specified en- ergy grid written in $\langle CALCDOS \rangle$. Use plot to convert the data and write them to xmgrace - compatible files *polar*.agr.
DATASET.tau	9	0	contains the non-vanishing elements of the scatter- ing path operator matrix $\tau_{\Lambda\Lambda'}$ for the specified en- ergy grid. Written in (PROJTAU).
			 If WRTAU has been set: component-projected <i>τ</i>-matrix <i>τ_t</i> for all components IT of the system. If WRTAUMQ has been set: <i>τ</i>-matrix and inverse <i>t</i>-matrix, <i>τ_q</i> and <i>m_q</i>, for all sites IQ of the system.

Example

To calculate the density of states for the ordered compound FeCo in the CsCl-structure ($a \approx 5.365$) the input file created by **xband** should look like this:

The file FeCo.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the density of states data will be written to the file FeCo_DOS.dos. The content of the file can be viewed using **plot** via **xband**. For the present example one gets the three files FeCo_DOS.dos.agr, FeCo_DOS.dos_Co.agr, and FeCo_DOS.dos_Fe.agr, that give the total and partial DOS and that can be viewed by invoking **xmgrace**. As an example the partial DOS of Fe is shown in Fig. 3.9. Note that the energy range is given in the input file in units of Ry with respect to the muffin-tin zero. For the display of the DOS the energy range is converted to eV with respect to the Fermi energy, i.e. E = 0 corresponds to $E = E_F$.

Figure 3.9: Top: total and partial DOS of FeCo. Below: The spin and angular momentum resolved partial DOS of Fe and Co in FeCo.

39

4 Calculating ground state properties

4.1 Magnetic Moments and Hyperfine Fields

The spin and orbital magnetic moments as well as the magnetic hyperfine fields [14] of all atomic types are calculated by **kkrscf** during every SCF cycle by performing a corresponding energy integral in the complex plane (see for example Eqs. (1.14) and (1.15)). Because the integrated DOS (NOS) for the last energy mesh point may differ from the required valence electron number an update of the Fermi energy is made and extrapolated results are written to standard output

31	E= 0.7720	0.0000	IT	= 1 Fe				
	DOS	NOS	P_spin	m_spin	P_orb	m_orb	B_val	B_core
S	0.3188	0.6384	0.0732	-0.0004	0.00000	0.00000	12.22 s	-151.99
р	0.6935	0.8009	-0.0166	-0.0198	0.01013	-0.00006	0.11 ns	0.70
d	21.4229	6.5607	-3.7996	1.9005	-0.06931	0.04993	20.98 co	r -151.30
sum	22.4352	8.0000	-3.7429	1.8803	-0.05919	0.04987	33.31 v+	c -117.99
TOT	22.4352	8.0000		1.8803		0.04987		

Columns 2, 4, 6 and 7 give in a *l*-resolved way the partial charge, spin moment, orbital moment, and valence hyperfine field of atomic type IT. The last column gives the s-, non-s- and total core hyperfine field as well as the total field (v+c).

The same results, but with a somewhat different format, can be obtained by running **kkrgen** for a given potential. The specific part of the input file may look like this

ENERGY GRID={5} NE={30} EMIN=-0.2

TASK DOS

supplying some of the following parameters

section TASK VAR / SWITCH default description

DOS ON Calculate the DOS

section ENERGY		
VAR / SWITCH	default	description
GRID =integer	-	5: circular energy path in complex plane
NE=integer	-	number of E-mesh points
EMIN=real	-0.2	real part of lowest E-value
EMAX=real	-	real part of highest E-value
EF=real	-	Fermi energy E_F
SEARCHEF	OFF	search E_F using EF as a first guess

If a circular path in the complex energy plane has been chosen (GRID=5), the upper end of the path (EMAX) is set to the Fermi energy EF. If the Fermi energy is not supplied via the potential file (for example if the potential is imported) **kkrgen** may search the proper Fermi energy. For this purpose the switch SEARCHEF has to be set and a reasonable guess for the Fermi energy EF has to be supplied.

4.2 Disordered Local Moment

To do DLM calculations that simulate temperature effects for the magnetisation, a CPA system should be set up with the help of **xband**.

For each given site, specify two types, both with the same element but with different spin. Their concentrations have to sum up to 1. Typically one might be interested in x(up) = x(down) = 0.5 (paramagnetic state).

To specify the spin, set the input variable MSPIN as mentioned in chapter 3.1. Use opposite signs for spin up and spin down for the two types of each site. **xband** can be used to set MSPIN: clicking on the SCF checkbox in the "create input" expert mode will show several options, MSPIN being one of them.

This method creates a metastable start potential. To prevent the system from flipping all spins to the same direction and relaxing to the global energy minimum (e.g. ferromagnetic state) during the SCF cycle, lower the SCF mixing parameter MIX to stabilize the local minimum of the metastable phase until you can converge your system in the desired phase.

```
section SCF
```

VAR / SWITCH default description

$\texttt{MSPIN}{=}\{\mu_1,,\mu_{\texttt{NT}}\}$	table	guess for the spin magnetic moment $\mu_{spin,t}$ for NT atomic types, use opposite signs for types occupying one site
MIX=real	0.20	SCF-mixing parameter, adapt to stabilize metastable phase

4.3 Magnetic Form Factor

Magnetic form factors, that may be used to discuss neutron or high energy X-ray scattering experiments, are calculated using **kkrgen** by making use of the so-called dipole approximation [15]. The specific part of a corresponding input file supplies some of the following parameters

section TASK VAR / SWITCH default description OFF FMAG Calculate the spin and orbital densities and corresponding magnetic form factors fsection ENERGY VAR / SWITCH default description GRID=integer 5: circular energy path in complex plane NE=integer number of E-mesh points -0.2 real part of lowest E-value EMIN=real

kkrgen writes the resulting spin, orbital and total magnetic densities and corresponding form factors formatted for **xmgrace**.

Files used:

Filename unit I/O description

DATASET.inp	5	Ι	input file described below
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET_dens_AT.agr	80	0	spin, orbital and total magnetic densities for the atom type AT written by $\langle DENSITY \rangle$ and formatted for viewing directly with xmgrace
DATASET_fmag_AT.agr	80	0	spin, orbital and total magnetic form factor for the atom type AT written by $\langle DENSITY \rangle$ and formatted for viewing directly with xmgrace

Example

To calculate the magnetic form factors for the ordered compound Fe_3Pt the input file created by **xband** should look like this:

The file FePt3.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the magnetic form factors will be written to files PtFe3_FMAG_fmag_AT.agr, which then can be visualised using **xmgrace** or using **plot** from within **xband**. Furthermore the files PtFe3_FMAG_dens_AT.agr will be written which contain the charge-, spin- and orbital-density curves for the different atom types.

4.4 Exchange coupling parameters *J_{ij}*

Using the SPR-KKR package it is possible to calculate the exchange coupling parameters J_{ij} of the Heisenberg model:

$$H_{ex} = -\sum_{i\neq j} J_{ij} \mathbf{e}_i \mathbf{e}_j ,$$

Figure 4.1: Magnetic form factors (left) and density curves (right) for Fe in the ordered compound Fe₃Pt.

where e_i and e_j are unit vectors having the directions of corresponding local magnetic moments on sites *i* and *j*. The exchange coupling parameter J_{ij} can be found from ab initio calculations based on the KKR Green's function method using the formulation of Lichtenstein et al. [J. Phys. F: Met. Phys., 14, L125 (1984)]:

$$J_{ij} = \frac{1}{4\pi} Im \int^{E_F} dE \text{ Trace } (t_{i\uparrow}^{-1} - t_{i\downarrow}^{-1}) \tau_{\uparrow}^{ij} (t_{j\uparrow}^{-1} - t_{j\downarrow}^{-1}) \tau_{\downarrow}^{ji}$$

The site *i* in these calculations is assumed to be positioned in the centre of a cluster of radius $R_{clu} = max|R_i - R_j|$. The exchange coupling parameters are calculated with respect to the central site *i* of a cluster with the radius R_{clu} . This calculation can be done running **kkrgen** with an input and potential file supplied.

The specific part of the input file supplies the following parameters:

section TASK VAR / SWITCH	default	description
JXC	OFF	Calculate the J_{ij}
CLURAD =integer	2.2	the radius of a sphere restricting the cluster of atoms for which the exchange coupling constants will be calculated

Files used:			
Filename	unit	I/O	description
DATASET.inp	5	Ι	input file described below
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET_J_ij.dat	80	0	contains the values of the exchange coupling be- tween the spin magnetic moment placed at the cen- tre of a cluster with magnetic moment of each atom in the cluster restricted by the value CLURAD - the cluster radius.
DATASET_Jij_IT.agr	80	0	Dependence of exchange coupling parameters on the distance between spin magnetic moments. Can be viewed with the program xmgrace .

The output file contains in the end the same table of exchange coupling parameters as the DATASET.dat file as well as the values of $J_0 = \sum_j J_{0j}$ parameters for each nonequivalent atom in a unit cell:

```
< XCCPLJO > XC-coupling constants J_0 

XC-coupling constants J_0 

TT = 1 Ni J0 = 0.003486 Ry 0.047428 eV 

IQ = 1 J0 = 0.003486 Ry 0.047428 eV 

occupation IT = 1 

equiv. sites IQ = 1 

Curie temperature within mean field approximation T_C = 387.7 K 

<math display="block">< XCCPLJIJ > XC-coupling constants J_ij 

XC-coupling constants J_ij 

XC-coupling constants J_ij 

TAUIJ ITAUJI N1 N2 N3 DRX DRY DRZ DR J_ij [Ry] J_ij [eV] 

1 12 -1 0 1 0.000 -0.500 0.707 0.000167 0.002268 

3 10 -1 1 0 0.500 -0.500 0.000 0.707 0.000164 0.002234 

<math display="block">
```

Example

To calculate the exchange coupling constants for Fe the input file created by **xband** should look like this:

```
******
# SPR-KKR input file Fe_JXC.inp
 created by xband on Sat May 14 22:16:45 CEST 2005
***********
CONTROL DATASET = Fe
     ADST
          = JXC
     POTFIL = Fe.pot
     PRINT = 0
TAU
     BZINT= POINTS NKTAB= 1000
ENERGY GRID={5} NE={30}
     EMIN=-0.2 Ry
TASK
     JXC
        CLURAD=4.7
```

The file Fe.pot has to contain a converged potential created by **kkrscf**. Running **kkrgen** the exchange coupling constants will be written to the file Fe_JXC_J_ij.dat which looks like:

```
<XCCPLJIJ>
                                            XC-coupling constants J_ij
******
                                                                                       *****
              number of sites
                                           NO =
                   1 1 1 1.000
      IQ = 1 IT = 1
                                                                 JQ = 1 JT = 1
          ->Q = ( 0.000, 0.000, 0.000) ->Q = ( 0.000, 0.000, 0.000)
AUIJ ITAUJI N1 N2 N3 DRX DRY DRZ DR J_ij [Ry] J_ij

        ITAUIJ ITAUJI
        N1 N2 N3
        DRX
        DRY
        DRZ
        DR
        J_ij [Ry]
        J_ij [eV]

        1
        8
        -1
        -1
        -0.500
        -0.500
        0.866
        0.001368
        0.018610

        7
        -1
        0
        0.500
        -0.500
        0.866
        0.001368
        0.018610

        6
        0
        -1
        0
        -0.500
        0.500
        -0.500
        0.866
        0.001368
        0.018610

        5
        0
        0
        -1
        -0.500
        -0.500
        0.866
        0.001368
        0.018610

                2
                3
                4
                5
                           4 0 0 1 0.500 0.500 -0.500 0.866 0.001368 0.018610
                                0 1 0 0.500 -0.500 0.500 0.866
1 0 0 -0.500 0.500 0.500 0.866
                6
                           3
                                                                                                       0.001368
                                                                                                                          0.018610
                7
                           2.
                                                                                                       0.001368
                                                                                                                          0.018610
                8
                                  1 1 1 0.500 0.500 0.500 0.866 0.001368
                          1
                                                                                                                          0.018610

        14
        -1
        -1
        0
        0.000
        0.000
        -1.000
        1.000

        13
        -1
        0
        -1
        0.000
        -1.000
        0.000
        1.000

                9
                                                                                                       0.000770
                                                                                                                          0.010473
              10
                                                                                                       0.000762
                                                                                                                          0.010371
                         12 0 -1 -1 -1.000 0.000 0.000 1.000 0.000762 0.010371
              11

        11
        0
        1
        1.000
        0.000
        0.000
        1.000
        0.000762

        10
        1
        0.000
        1.000
        0.000
        1.000
        0.000762

              12
                                                                                                                         0.010371
              13
                                                                                                                          0.010371
                                 1 1 0 0.000 0.000 1.000 1.000 0.000770 0.010473
              14
                          9
                         26 -2 -1 -1 0.000 -1.000 -1.000 1.414 -0.000034 -0.000466
25 -1 -2 -1 -1.000 0.000 -1.000 1.414 -0.000034 -0.000466
              15
              16
                          24 -1 -1 -2 -1.000 -1.000 0.000 1.414 -0.000034 -0.000465
              17

      -1
      0
      1
      1.000
      0.000
      -1.000
      1.414
      -0.000034
      -0.000466

      -1
      1
      0
      1.000
      -1.000
      0.000
      1.414
      -0.000034
      -0.000465

      0
      -1
      1
      0.000
      1.000
      -1.000
      1.414
      -0.000034
      -0.000465

              18
                          23
              19
                          22
              2.0
                         21
              21
                         20 0 1 -1 0.000 -1.000 1.000 1.414 -0.000034 -0.000466
                                 1 -1 0 -1.000 1.000 0.000
1 0 -1 -1.000 0.000 1.000
              22
                          19
                                                                                         1.414
                                                                                                      -0.000034 -0.000465
                                                                                                    -0.000034 -0.000466
              23
                          18
                                                                                        1,414
                         17
                                 1 1 2 1.000 1.000 0.000 1.414 -0.000034 -0.000465
              24
                                   1 2 1 1.000 0.000 1.000
2 1 1 0.000 1.000 1.000
              25
                          16
                                                                                         1.414
                                                                                                      -0.000034 -0.000466
                                                                                                    -0.000034 -0.000466
              26
                          15
                                                                                         1.414
```

If there are more than one atom in a unit cell, the file Fe_JXC_J_ij.dat will contain also the corresponding tables for different combinations IQ, IT and JQ, JT. The numbers N1,

Figure 4.2: The exchange coupling parameter of Fe as a function of the distance *R* between the spin magnetic moments.

N2, N3 in the table are the crystallographic coordinates of local magnetic moments in a cluster interacting with the central one, while DRX, DRY, DRZ are their Cartesian coordinates. The column denoted by DR contains the distances from central atom to each atom of a cluster. Both the Cartesian coordinates and distances are represented in units of lattice constants. The last two columns in the table denoted by J_{ij} [Ry] and J_{ij} [eV] contain the values of exchange coupling parameters represented in Ry and eV respectively.

Also the corresponding **xmgrace** - compatible file Fe_JXC_Jij_Fe.agr will be created, which can be viewed by invoking **xmgrace**. This file contains the plot of exchange coupling parameters vs. the distance between the spin magnetic moments which is shown in Fig. 4.2.

Figure 4.3: Geometry for torque calculations

4.5 Magnetic torque $T_{\vec{u}}$

The magneto-crystalline anisotropy can be investigated via magnetic torque calculations [16, 17]. This method has obvious advantages when compared to the total energy calculations since the MCA can be obtained from a single calculation and reliance is not placed on the accurate extraction of a small difference between two energies [16]. The magnetic torque $\vec{T}_i^{(\hat{n}_i)} = -\partial E(\{\hat{n}_k\})/\partial \hat{n}_i \times \hat{n}_i$ acting on the magnetic moment \vec{m}_i of the atomic site *i*, with a unit vector $\hat{n}_i = \vec{m}_i/|\vec{m}_i|$ pointing along the direction of the magnetization \vec{M} (Fig. 4.3a). The component of the magnetic torque with respect to the axis \hat{u}

$$T_{\hat{u}}(\theta,\phi) = -\partial E(\vec{M}(\theta,\phi))/\partial\theta$$
(4.1)

is calculated in accordance to [16, 17]. Here, the \hat{u} vector specified by the angles θ and ϕ (see Fig. 4.3b) lies within the surface plane and is perpendicular to the direction of the magnetic moment \hat{n} . For an uniaxial anisotropy a special geometry can be used which gives a simple relationship between the magnetic torque and the energy difference between the in-plane and out-of-plane magnetization directions. Setting $\theta = \pi/4$, the torque component $T_{\hat{u}}$ gives the ϕ dependent energy difference $T_{\hat{u}}(\theta = \pi/4, \phi) = E_{\parallel}(\phi) - E_{\perp}$ [18, 16, 19].

The implementation within the SPR-KKR package of magnetic torque calculations is based on [16]. The result printed out in the output file corresponds to the derivative

$$\tilde{T}_{\hat{u}}(\theta,\phi) = \partial E(\vec{M}(\theta,\phi))/\partial\theta , \qquad (4.2)$$

which can be used to obtain the magnetic torque value

$$T_{\hat{u}}(\theta,\phi) = -\tilde{T}_{\hat{u}}(\theta,\phi) . \tag{4.3}$$

The specific part of the input file supplies the following parameters:

section TASK

VAR / SWITCH	default	description		
TORQUE THETAO =real	OFF	Calculate magnetic torque		
PHIQ=real		the angles characterizing orientation of the direction \hat{u}		
section MODE				
VAR / SWITCH	default	description		
MALF=real MBET=real MGAM=real		the angles characterizing the orientation of the magnetic moment direction \hat{n}		
section ENERGY				
VAR / SWITCH	default	description		
GRID =integer	-	8: circular energy path in complex plane		
NE=integer	-	number of E-mesh points		
EMIN=real	-0.2	real part of lowest E-value		
Files used:				
Filename	uni	it I/O description		

DATASET.inp	5	Ι	input file described below
DATASET.pot	4	Ι	input potential

(Taking MALF, MBET, MGAM and THETAQ, PHIQ angles, pay attention that \hat{u} direction is orthogonal to the plane of rotation of the magnetization direction (Fig. 4.3).)

Running **kkrgen** the results are printed out to the output file. The output file contains in the end the site-resolved magnetic torque values in Ry as well as total torque both in Ry and meV:

Example

To calculate the magnetic torque for Fe-Ni alloy the input file should look like this:

ENERGY	GRID={8} NE={16} EMIN=-0.2 Ry
MODE	MALF={0.0} MBET={45.0} MGAM={0.0}
TASK	TORQUE THETAQ={90.0} PHIQ={90.0}

The file FeNi.pot has to contain a converged potential created by **kkrscf** for magnetization direction along \hat{z} axis (default directions), or, the same, along [0, 0, 1] direction. One has to be sure that KMROT = 0 in this file. One has to use the energy mesh GRID=8, where the number of energy points NE=16 gives satisfying results. One can use more dense energy mesh, e.g., with 24 or 32 energy points. In the case of alloys, the CPA tolerance has to be taken 1E-7, both, within the SCF calculations to create converged potential as well as for torque calculations. The number of *k* points used for torque calculations should be large enough to get convergence with respect to this value.

At the end of the output file (see the example above), the total torque is printed out both in Ry and meV. Site-resolved magnetic torque is presented in Ry for Fe site (IQ = 1) and for Ni site (IQ = 2). A positive sign of these values means the torque direction toward \hat{z} or [0, 0, 1] direction.

As an example, the results are presented for Fe-Co alloy [20] for random bct $Fe_{0.4}Co_{0.6}$ alloy as a function of the tetragonal strain c/a. For all calculations the following input was used:

```
**********
# SPR-KKR input file Torque.inp
 created by xband on Wed Sep 16 09:00:26 CEST 2009
**********
CONTROL DATASET = FeCo
      ADSI = Torque
POTFIL = FeCo.pot_new
      PRINT = 0
SITES
      NL={4}
      BZINT= POINTS NKTAB= 1000
TAU
ENERGY GRID={8} NE={16}
      EMIN=-0.2 Ry
MODE
      MALF = \{0.0\} MBET = \{45.0\} MGAM = \{0.0\}
TASK
      TORQUE THETAQ={90.0} PHIQ={90.0}
```

The results are compared with total energy calculations in Fig. 4.4. Positive values of the results in the output file mean the torque direction toward \hat{z} direction.

Figure 4.4: MCA for for random bct $Fe_{0.4}Co_{0.6}$ alloy as a function of the tetragonal strain c/a.

5 Linear response calculations

5.1 Magnetic susceptibility

The magnetic susceptibility as a linear response to a static uniform external magnetic field can be calculated for pure-element and alloy systems using **kkrchi**. Calculations have to be done in fully relativistic mode (default).

The specific part of the input includes the parameters

TASK CHI

supplying the following parameters section TASK

DATASET.inp	5	Ι	input file described above
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.

5.1.1 Example

To calculate the magnetic susceptibility χ for Pt fcc one has to use the input files created by **xband**. Thus, the input file DATASET.inp can look like:

```
CONTROL DATASET = Pt

ADSI = CHI

POTFIL = Pt.pot

PRINT = 0

CHIPRINT = 0

TAU BZINT= POINTS NKTAB= 1000

SITES NL = {4}

ENERGY GRID={5} NE={32}

EMIN=-0.2

TASK CHI
```

The results are stored in the output file DATASET.out, the last table which looks like:

```
results INCLUDING additional high-field terms
_____
           results for atom type IT= 1 Pt
           polarisations at the Fermi level
                                      DOS
                                                     P_spin P_orb(dn) P_orb(up)

        DOS
        P_SPIN
        P_Orb(dn)
        P_Orb(up)

        22.651641
        0.000000
        -1.526865
        1.526865

        0.262696
        0.000000
        -0.000010
        0.000010

        0.563146
        0.000000
        -0.012859
        0.012859

                          s
                          р
                          d 21.538038 0.000000 -1.542544 1.542544
f 0.287761 0.000000 0.028547 -0.028547
           magnetic susceptibility
            CHI tot :
                                 147.566783 x 10^(-6) cm^3/mol
            CHI S
                         :
                                  128.267455

        119.574044
        0:
        54.023239
        XC:
        65.550805

        0.348482
        0.504399
        -0.155917

        -0.061200
        1.154739
        -1.215939

        118.376231
        51.725905
        66.650326

        0.910531
        0.638196
        0.272335

           CHI SS
                          :
                          s
                          р
                          d
                                    0.910531
                                                                 0.638196
                                                                                            0.272335
                          f
            ICHI(S) :
                                   0.548203
                                8.693412 0: 7.868861 XC: 0.824550
            CHI SO
                      :
```

CHI O		:	61.425144				
CHI OO	dn	: p d f s	43.668291 0.000024 2.378283 40.134021 1.155964 0.000012	0:	39.481738 0.000022 2.235666 36.151214 1.094837 0.000011	XC:	4.186553 0.000003 0.142617 3.982807 0.061127 0.000001
	up	p d f s p d f	1.189141 20.067010 0.577982 0.000012 1.189141 20.067010 0.577982		1.117833 18.075607 0.547418 0.000011 1.117833 18.075607 0.547418		0.071308 1.991403 0.030563 0.000001 0.071308 1.991403 0.030563
ICHI(O)	:	0.095872				
CHI OS		:	17.756853	0:	7.868861	XC:	9.887992
CHI DI	A	: p d f	-42.125816	core:	-15.655950	cb:	-26.469867 -3.106915 -3.841841 -18.582767 -0.938330

It gives the following results:

- CHI tot is the total magnetic susceptibility CHI S + CHI O + CHI DIA

- CHI S is the total spin magnetic susceptibility including enhanced spin susceptibility CHI SS and SOC induced spin susceptibility CHI SO

- CHI O is the total Van Vleck orbital susceptibility including enhanced orbital susceptibility CHI OO and SOC induced orbital susceptibility CHI OS

- CHI DIA is the Langevin orbital (diamagnetic) susceptibility consisting of core and band electron contributions.

The panel 0: gives un-enhanced susceptibility values and the panel XC: gives the enhancement due to exchange (for spin) or orbital polarization (for orbital) effects.

In the case of alloys, there are two tables at the end of DATASET.out file, giving the element resolved magnetic susceptibilities. The total magnetic susceptibility is printed out at the end of the file

total magnetic susceptibility 181.883636 x 10^(-6) cm^3/mol

5.2 Gilbert damping parameter

5.2.1 Gilbert damping at T = 0 K

The Gilbert damping parameter α can be calculated using **kkrchi**. The calculations at T = 0K can be performed only for alloy systems. The specific part of the input includes the parameters

SITES ENERGY	NL={4} GRID={3} NE=	={1}	
TASK	Gilbert		
supplyi section VAR / S	ng the follo TASK SWITCH	owing parame default	ters description
Gilber	rt	OFF	Perform calculations of the Gilbert damping parameter

Important issues for Gilbert damping α calculations:

- One has to use the fully relativistic mode (i.e. default mode);

- One has to use a large amount of *k*-points in the BZ. To find the required number of k points (NKTAB in the input file), one has to investigate a convergence of the results (i.e., calculated α) with respect to this number;

- The NL value is recommended to be taken not less than NL = 4 in the case of *d*-systems (that corresponds to the cutoff $l_{max} = 3$ for the angular momentum expansion of the Green's function), NL = 5 in the case of *f*-systems (i.e. $l_{max} = 4$), etc.

Files used:

Filename	unit	I/O	description
DATASET.inp	5	I	Input file described above
DATASET.pot	4	I	Input potential read in by 〈POTIO〉.

The results are printed to the file DATASET.out. The **non-normalized** total Gilbert damping parameter per unit cell are printed out as follows (see below)

	total	term O	term 1
(-VC)	XXTOT	XXO	XX1
(+VC)	YYTOT	YYO	YY1

where XXTOT represents the result obtained without vertex corrections (-VC) and YYTOT - the result with vertex corrections (+VC) taken into account. The latter value, YYTOT, scaled by the factor g_{eff}/μ_{tot} gives the value of the Gilbert damping parameter α , where $g_{eff} = 2(1 + \mu_{orb}/\mu_{spin})$ is given in terms of the spin and orbital moments, μ_{spin} and μ_{orb} , respectively, and the total magnetic moment $\mu_{tot} = \mu_{spin} + \mu_{orb}$.

The element resolved spin (SMT = μ_{spin}) and orbital (OMT = μ_{orb}) moments, g-factor (GEFF = $g_{eff} = 2(1 + \mu_{orb}/\mu_{spin})$) as well as the scaling factors (G/MEFF = g_{eff}/μ), for the alloy $A_x B_y$ are given in a table like this:

magn	etic	mome	nt in	formation	with G	EFF = 2(SMT+C))/SMT)/SMT	
IQ	IO	ΙT	TXT	CONC	SMT	OMT	GEFF	G/MEFF
1	1	1	A	х	mA_s	mA_o	gA	SA
2	1	2	В	У	mB_s	mB_o	gВ	SB
aver	age	(site)		<m_s></m_s>	<m_s></m_s>	<g_eff></g_eff>	<s></s>
aver	age	(sum)		Sun	n xi∗mi_s	Sum xi*mi_o	<g_eff></g_eff>	<ss></ss>

The element projected Gilbert damping components of the α tensor, namely α_{xx} and α_{yy} components are given in a table like this: table

sit	e and	l componer	nt resolved	d ALPHA (incl	uding fact	tor g_eff	/ m_eff)	
			alfa (+V	C)	alfa (-V	C)	alfa	(0)
IQ	TXT		XX	УУ	XX	УУ	XX	УУ
1	A		XXA+	YYA+	XXA-	YYA-	XXA0	YYA0
2	В		XXB+	YYB+	XXB-	YYB-	XXB0	YYB0
ave	rage	(site)	<xx+></xx+>	<yy+></yy+>	<xx-></xx->	<yy-></yy->	<0XX0>	<yyo></yyo>
ave	rage	(sum)	<xxs+></xxs+>	<yys+></yys+>	<xxs-></xxs->	<yys-></yys->	<xxso></xxso>	<yyso></yyso>

The results to compare with the experiment are <XXS+> and <YYS+> given in the field average (sum)

Example

To calculate the Gilbert damping parameter α for Fe_{0.5}Co_{0.5} one has to use the input files created by **xband**. The input file DATASET.inp might look like:

CONTROL DATASET = FeCo ADSI = Gilbert POTFIL = FeCo_Gilbert.pot PRINT = 0 SITES NL={3}

NL=3 is used only for demonstration

CPA	TOL=0.0000001
TAU # small	BZINT= POINTS NKTAB= 1000 NKTAB is used only for demonstration
ENERGY	GRID={3} NE={1}
TASK	Gilbert

The results are written to the output file DATASET.out with the last table looking like this:

Gilbert damping parameter ALPHA

	(-V (+V	C) C)	tot -0.008 0.003	al 3008237 1382621	1 3	term 0.15430 0.15430	0 60039 60039	9 -0. 9 -0.	term 1 1623142 1529233	410 825	
	to	be sca	led by	factor	g_eff	/ m_eff					
magne	etic	momen	t info	rmation	with	n GEFF	= 2 (\$	SMT+OM	IT)/SMT		
ТО	ΤO	ТТ	тхт	CONC	SMT	OMT		GEFF	G/MEF	'F'	
1	1	1 1	Fe	0.500	2.530	0.05	6 2	2.045	0.791		
1	2	2	Со	0.500	1.730	0.08	6 2	2.099	1.156		
avera	age	(site)			2.130	0.07	1 2	2.067	0.939		
avera	age	(sum)			2.130	0.07	1 2	2.067	0.939	1	
site	and	compo	nent re	esolved	ALPHA	(includ	ing 1	factor	g_eff	/ m_eff)	
			al:	fa (+VC)	a	lfa	(-VC)		alfa	(0)
IQ I	ΓXΤ		XX		УУ	Х	х	УУ	7	XX	УУ
1 H	e		0.000	0625 0	.000625	-0.0	0713	-0.00	713	0.12787	0.12787
1 (Co		0.002	2284 0	.002284	-0.0	0809	-0.00	809	0.16983	0.16983
avera	age	(site)	0.001	L454 O	.001454	-0.0	0761	-0.00	761	0.14885	0.14885
avera	age	(sum)	0.001	L298 0	.001298	-0.0	0752	-0.00	752	0.14491	0.14491

5.2.2 Gilbert damping at finite temperature

The Gilbert damping parameter α can be calculated also for $T \neq 0K$. These calculations are allowed both for ordered as well for disordered systems, i.e. for alloys, for pure elemental materials and for ordered compounds. Similarly to the case of T = 0 K, one has to use the fully relativistic mode for the α calculations, with a large amount of *k*-points in the BZ (specified by NKTAB in the input file). The NL value **has to be taken** not less than NL = 4 in the case of *d*-systems (that corresponds to the cutoff $l_{max} = 3$ for the angular momentum expansion of the Green's function), NL = 5 in the case of *f*-systems (i.e. $l_{max} = 4$), etc.

The finite temperature calculations can be done using two different modes specified by the parameter SETFLUCT.

MODE 1 (specified by SETFLUCT = MLIN with linear temperature grid, used only in the lattice vibrations mode) requires the following parameters

section TASK

VAR / SWITCH	default	description
Gilbert	OFF	Perform calculation of the Gilbert damping parameter
SETFLUCT	OFF	Linear temperature grid (used only in the lattice vibrations mode)
TMPMIN	OFF	Lower limit of the temperature region
TMPMAX	OFF	Upper limit of the temperature region
NTMP	OFF	Number of temperature points used for $\alpha(T)$ calculations
NVIBRA	OFF	Number of directions for atomic displacements representing thermal lattice vibrations

NOTE that this mode allows to take into account only the electron scattering due to lattice vibrations! In the current version, always NVIBRA= 14 when NVIBRA> 1 in the input file.

Example

The input file DATASET.inp in this cas might look like:

```
CONTROL DATASET = Fe

ADSI = GILBERT

POTFIL = Fe.pot_new

PRINT = 0

SITES NL={3}

# NL=3 is used only for demonstration

CPA TOL=0.00000001

TAU BZINT= POINTS NKTAB=1000

# small NKTAB is used only for demonstration

ENERGY GRID={3} NE={1}

TASK Gilbert SETFLUCT=MLIN TMPMIN=100 TMPMAX=100 NTMP=1

VIBRA NVIBRA=14
```

The results are written to the output file DATASET.out with the last table looking like this:

Gilbert damping parameter ALPHA

			total		term O	te	erm 1		
	(-VC)		0.0053354	973	0.113488389	0 -0.10	81528918		
	(+VC)		0.0052968	091	0.113488389	0 -0.10	81915800		
	()		0.0002900	0.0 1	0.110100000	0.10	01910000		
	to be	scale	ed by fact	or g_eff	/ m_eff				
magne	etic m	oment	informati	on with	n GEFF = 2(SMT+OMT)	/SMT		
IO	IO	IT T>	T CON	C SMT	OMT	GEFF	G/MEFF		
1	1	1 Fe	e 1.00	0 2.280	0.054	2.047	0.877		
avera	age (s	ite)		2.280	0.054	2.047	0.877		
avera	age (s	um)		2.280	0.054	2.047	0.877		
site and component resolved ALPHA (including factor g_eff / m_eff)									
			alfa (+	VC)	alfa	(-VC)		alfa	(0)
IQ 7	TXT		XX	УУ	XX	УУ	XX		УУ
1 1	Fe		0.004647	0.004647	7 0.00468	0.0046	68 0.09	956	0.09956
avera	age (s	ite)	0.004647	0.00464	0.00468	0.0046	6.09	956	0.09956
avera	age (s	um)	0.004647	0.00464	7 0.00468	0.0046	.0.09	956	0.09956

MODE 2 specified by SETFLUCT = M_T requires the following parameters

section TASK VAR / SWITCH	default	description
Gilbert	OFF	Perform calculation of the Gilbert damping parameter
SETFLUCT	OFF	Temperature grid decribed in an additional data file
FLUCTFIL	OFF	Data file which contains the information about temperature dependent magnetizstion, taken from the experiment or Monte Carlo simulations
NVIBRA	OFF	Number of directions for atomic displacements representing thermal lattice vibrations
NFTET	OFF	Number of grid points specifying θ angle
NFPHI	OFF	Number of grid points specifying ϕ angle

NOTE that this mode allows to take into account the electron scattering due to lattice vibrations as well as due to spin fluctuations. The grid for the spin fluctuations is characterized by the numbers NFTET and NFPHI. If NFTET = 1 and NFPHI = 1 but NVIBRA is bigger than 1, only lattice vibrations are taken into account. On the other hand if NVIBRA = 1 but NFTET is bigger than 1 and NFPHI is bigger than 1, only spin fluctuations are taken into account.

Example

To calculate the Gilbert damping parameter α for Fe_{0.999}Vc_{0.001} the input file DATASET.inp might look like:

CONTROL	DATASET = FeVac ADSI = Gilbert POTFIL = FeVac_Gilbert.pot PRINT = 1
CPA	TOL=0.00001
TAU	BZINT= POINTS NKTAB= 300
ENERGY	GRID={3} NE={1}
TASK	Gilbert SETFLUCT=M_T FLUCTFIL=FeVac_Gilbert.dat NVIBRA=14 NFTET=30 NFPHI=4

The file FeVac_Gilbert.dat looks like:

2			! number of TYPES
* * * * * * * *	* * * * * * * * * *	******	***************************************
TYPES			
1	Fe	1	
2	Vac	1	
******	* * * * * * * * * *	*****	*****
2			! number of temperature steps
1023.1			! TCURIE
0.	1.0000	1.0000	! magnetization at T=0 - only for nomalization
250.6	0.9865	0.9865	! first temperature step
814.3	0.8024	0.8024	! each column corresponds to different TYPE
501.1	0.9463	0.9463	

NOTE: the magnetization at T = 0 is used only for normalization. Tis is important when the magnetization is given in absolute units.

The results are stored in the output file DATASET.out with the last table looking like this:

Gi	lbert	dampin	ıg parame	ter ALP	HA		
(+7 (-7	VC) VC)	t 0.0 0.0	otal 01964197 09144265	6	term 0 0.4685707 0.4685707	7032 -0. 7032 -0.	term 1 4666065056 4594264376
to	be sc	aled b	y factor	g_eff	/ m_eff		
magnetio	c mome	nt inf	formation	with	GEFF =	2 (SMT+OM	T)/SMT
IQ IO	IT	TXT	CONC	SMT	OMT	GEFF	G/MEFF
1 1	1	Fe	0.999	2.270	0.052	2.046	0.881
1 2	2	Vc	0.001	-0.002	-0.004	5.443-	890.531
average	(site)		2.268	0.052	2.046	0.882
average	(sum)			2.268	0.052	2.046	0.882

site and component resolved ALPHA (including factor g_eff / m_eff)

			alfa (-	+VC)	alfa	(-VC)	alfa	a (O)
IQ	TXT		XX	УУ	XX	УУ	XX	УУ
1	Fe		0.008065	0.008065	0.00173	0.00173	0.41327	0.41327
1	Vc		-0.001862	-0.001862	-0.00044	-0.00044	-0.00012	-0.00012
ave	rage	(site)	0.008055	0.008055	0.00173	0.00173	0.41285	0.41285
ave	rage	(sum)	0.008065	0.008065	0.00173	0.00173	0.41327	0.41327

5.3 Resistivity

The electrical conductivity can be calculated using **kkrchi** (more precisely, the symmetric part of the conductivity tensor is calculated via the Kubo-Greenwood formalism). The conductivity calculation is performed for alloy systems at T = 0K.

The specific part of the input includes the parameters

```
SITES NL={4}
ENERGY GRID={3} NE={1}
TASK SIGMA
```

One has to use a large amount of *k*-points in the BZ for SIGMA calculations, i.e. one has to investigate a convergence with respect to the number NKTAB in the input file.

Files used:

Filename	unit	I/O	description
DATASET.inp	5	Ι	input file described above
DATASET.pot	4	Ι	input potential read in by $\langle POTIO \rangle$.

The results are printed to the file DATASET.out:

	SIG	MA			
		witho	ut Vertex		with Vertex
MUE	NUE	a.u.	[1/muOhm*cm]	a.u.	[1/muOhm*cm]
1	1	111.72177796	0.07044670	146.56535831	0.09241748
1	2	0.0000000	0.0000000	0.0000000	0.0000000
1	3	0.0000000	0.0000000	0.0000000	0.0000000
2	1	0.0000000	0.0000000	0.0000000	0.0000000
2	2	111.72177796	0.07044670	146.56535831	0.09241748
2	3	0.0000000	0.0000000	0.0000000	0.0000000
3	1	0.0000000	0.0000000	0.0000000	0.0000000
3	2	0.0000000	0.0000000	0.0000000	0.0000000
3	3	108.35966863	0.06832670	140.25367663	0.08843762

where MUE, NUE represent the components of the conductivity tensor $\sigma_{\mu\nu}$. The conductivity values are given in a.u. and in SI units ($\mu\Omega^{-1}cm^{-1}$). Results obtained without vertex corrections and with vertex corrections are printed.

5.3.1 Example

To calculate the conductivity for $Fe_{0.5}Pd_{0.5}$ one has to use the input files created by **xband**. The input file DATASET.inp can look like:

CONTROL	DATASET ADSI POTFIL PRINT = 0	=	Fe0.5Pd0.5 SIGMA Fe0.5Pd0.5.pot_new
SITES	NL = { 4 }		
TAU	BZINT= POINT	ſS	NKTAB= 100000
ENERGY	GRID={3} NE=	= { 1	L }
TASK	SIGMA		

The results are stored in the output file DATASET.out:

Sig	Sigmatensor total:								
===:									
	SIG	MA							
		withc	out Vertex		with Vertex				
MUE	NUE	a.u.	[1/muOhm*cm]	a.u.	[1/muOhm*cm]				
1	1	111.72177796	0.07044670	146.56535831	0.09241748				
1	2	0.0000000	0.00000000	0.0000000	0.0000000				
1	3	0.0000000	0.00000000	0.0000000	0.0000000				
2	1	0.0000000	0.00000000	0.0000000	0.0000000				
2	2	111.72177796	0.07044670	146.56535831	0.09241748				
2	3	0.0000000	0.0000000	0.0000000	0.0000000				
3	1	0.0000000	0.0000000	0.0000000	0.0000000				
3	2	0.0000000	0.0000000	0.0000000	0.0000000				
3	3	108.35966863	0.06832670	140.25367663	0.08843762				
SMA	from	inv. cond. (wi	th VC)	[%]:	4.433682				
			,						
	Res	istivitv							
		withc	out Vertex		with Vertex				
MUE	NUE	a.u.	[1/muOhm*cm]	a.u.	[1/muOhm*cm]				
1	1	0.00895081	14.19512986	0.00682289	10.82046375				
1	2	0.0000000	0.0000000	0.0000000	0.0000000				
1	3	0.0000000	0.0000000	0.0000000	0.0000000				
2	1	0.00000000	0.0000000	0.0000000	0.0000000				
2	2	0.00895081	14.19512986	0.00682289	10.82046375				
2	3	0.00000000	0.0000000	0.0000000	0.0000000				
3	1	0.00000000	0.0000000	0.0000000	0.0000000				

5.3.2 Resistivity at finite temperature

The resistivity $\rho_{\alpha\beta}$ can be also calculated for $T \neq 0K$. Similarly to the Gilbert damping calculations, $\rho_{\alpha\beta}(T)$ calculations are allowed for ordered as well for disordered materials. In this case, in the input file the required parameters have to be specified, as it is described above in the section 5.2.2.

6 Calculating spectroscopic properties

6.1 Calculation of spectroscopic properties included in kkrgen

6.1.1 General remarks

Any expression for a spectroscopic property calculated by the **SPRKKR** programs involve the site-diagonal energy dependent scattering path operator $\tau_{\Lambda\Lambda'}^{nn}(E)$. When starting e.g. **kkrgen** with the input setting TASK XAS **kkrgen** first checks whether a corresponding file DATASET.tau containing $\tau_{\Lambda\Lambda'}^{nn}(E)$ is available. If this is not the case, **kkrgen** will first calculate the scattering path operator. Depending on the TASK it will store the componentprojected one $\tau_{\Lambda\Lambda'}^{nn\alpha}(E)$ (e.g. for TASK XAS) or the site-specific one $\tau_{\Lambda\Lambda'}^{nn}(E)$ together with the effective scattering *t*-matrices $m_{\Lambda\Lambda'}^{n}(E) = (t^n(E))_{\Lambda\Lambda'}^{-1}$ (e.g. for TASK VBXPS). After the file DATASET.tau has been created, it will be read energy by energy and the spectroscopic property will be calculated. The file DATASET.tau will be kept for later use. For example one may calculate in a first run of **kkrgen** the K-edge spectrum of Fe in FePt. In a later run, that uses the file DATASET.tau created by the first run, one may calculate, over the same energy for the final states, the $L_{2,3}$ -spectra of Pt in FePt.

For spectroscopic properties, that depend on the polarization of absorbed or emitted light, three polarization states are generally considered: left and right circularly and *z*-linearly polarized light. These polarization states are referred to a local frame of reference of an atom for which the magnetization points along the local *z*-axis. This means that locally always a polar geometry is considered. This has to be kept in mind when dealing with systems with their magnetization not aligned along the crystallographic *z*-axis.

6.1.2 X-ray absorption spectroscopy

A calculation of X-ray absorption spectra [8] can be done using the programs **kkrgen** or **embgen**. Absorption spectra are calculated for three polarizations (+, - and z). The corresponding part of DATASET.inp supplies the following parameters:

section ENERGY						
VAR / SWITCH	default	description				
	6					
GRID=Integer	6	that is denser in the white line regime				
NE=integer	-	number of E-mesh points				
EMAX=real	-	real part of maximal E-value				
IME=real	-	imaginary part of energy				
section TASK						
VAR / SWITCH	default	description				
XAS	OFF	Calculates X-ray absorption spectra				
IT=integer	1	atom type IT				
CL=string	2P	initial core level shell				
MECHECK	OFF	check matrix elements for testing purposes				
OUTPUT=string	MBARN	MBARN : output of absorption coefficient μ				
		as $\mu_{atom} = \mu V_{uc}$ in [Mbarn]				
		SIGMA : output as absorptive part of optical				
		conductivity $\sigma = \mu c/4\pi$ in $[10^{15}s^{-1}]$				

When **kkrgen** is used for the XANES-region, a sufficiently high number of \vec{k} -points should be set and the structure constants need to be converged (RMAX and GMAX values set high enough).

If **embgen** is used instead of **kkrgen** to get the multiple scattering path operator τ one is able to calculate X-ray absorption spectra for both XANES and EXAFS regions. In this case one has first of all to set the calculation of τ in real-space mode within a finite cluster. It is then necessary to set the cluster size and to specify around which atomic site of the unit cell should be the cluster built:

TAU CLUSTER NSHLCLU=4 IQCNTR=1

or

TAU CLUSTER CLURAD=1.5 IQCNTR=1

In the first example the size of the cluster is specified by the number of coordination shells NSHLCLU around the site IQCNTR, while the second gives explicitly the radius CLURAD (in lattice constant units) of a spherical cluster around IQCNTR.

It is important to keep in mind that the scattering path operator τ as obtained from **embgen** is meaningful only for the central cluster site IQCNTR and the corresponding DATASET.tau file created by **embgen** contains only one τ at the end of the execution. Therefore, the atomic type IT specified in the TASK XAS line should really occupy the atomic site IQCNTR. Choosing another IT might require a new IQCNTR and consequently the DATASET.tau file has to be either removed or renamed – in any case created anew.

The two different X-ray absorption regimes – XANES and EXAFS – can be essentially distinguished by different cross-sections of the photo-electron; therefore, using **embgen** for a XANES calculation requires rather big clusters (up to 200 atoms) whereas smaller (around 50 atoms) are usually enough for an EXAFS spectrum, corresponding to a reduced crosssection. In the latter case, however, due to the high energy of the final state, a larger value for the angular momentum expansion is needed, in general $l_{\text{max}} = 6$. Nevertheless, the selection rule $\Delta l = \pm 1$ allows one to reduce the size of the output τ matrix using the variable NLOUT, e.g., for M_{4,5}-edges one needs no final states higher than f-states, l = 3, implying NLOUT=4. The input file may look than like

SITES NL=7 (lmax+1) TAU CLUSTER NSHLCLU=4 IQCNTR=1 NLOUT=4

Regardless which program is used to calculate X-ray absorption spectra, **kkrgen** or **emb-gen**, the final result will be the spectroscopy file DATASET.rat which can be plotted using **plot**.

Files used:

Filename	unit I/0	С	description	
DATASET.inp	5 I		input file	
DATASET.pot	4 I		input potential read in by $\langle POTFIT \rangle$.	
DATASET.rat	7 ()	XAS spectroscopy file created by $\langle XRAYSPEC \rangle$.	

Example

Assuming we have already an SCF potential for bcc-Fe stored in the file Fe.pot, we want to calculate the K-edge absorption spectrum of Fe using **kkrgen**. The input file should look like
At the end of the execution, the file Fe_XAS_Fe_K.rat will be created, which has to be processed by **plot**.

Alternatively, one can use **embgen** with the only difference in the TAU line

TAU CLUSTER IQCNTR=1 CLURAD=1.5

A comparison of the two calculations is presented in Fig. 6.1. It is obvious that the cluster size chosen here for the real-space calculation is still too small.

The corresponding EXAFS spectrum at the K-edge of Fe can be calculated using **embgen** with the input file accordingly modified for the energy range (see Fig. 6.2)

Note the value for EMAX and the fact that, since we are not interested in the near-edge region, GRID=3 can also be used.

Figure 6.1: X-ray absorption spectrum at the K-edge of Fe in bcc-Fe. Left: results obtained using a Brillouin-zone integration for τ (program **kkrgen**). Right: results obtained by means of a real-space calculation for τ (program **embgen**) with a cluster size of $1.5 a_{\text{Fe}}$. Top panel of each figure shows the polarization averaged absorption coefficient $\bar{\mu}$, the dichroic signal $\mu^+ - \mu^-$ is shown at the bottom. Note: the broadening may lead to artefacts at the high energy end of the spectrum. The cluster calculation is not converged !

Figure 6.2: EXAFS and MEXAFS spectra at the K-edge of Fe in bcc-Fe. Top: polarization averaged absorption coefficient $\bar{\mu}$; bottom: the dichroic signal $\mu^+ - \mu^-$.

6.1.3 X-ray emission spectroscopy

For a calculation of X-ray electron emission spectra [21] the corresponding part of DATASET.inp may look like this:

ENERGY GRID={6} NE=150 EMAX=4.0 IME=0.01

TASK XES CL=2p IT=1

For further details see Sec. 6.1.2.

6.1.4 X-ray magneto-optics

X-ray resonant magneto-optical properties are calculated using the programs **kkrgen** or **embgen** respectively (see Section 6.1.1). The resulting full complex conductivity tensor $\sigma_{\alpha\beta}$ [22] is written into the file DATASET.rat. The corresponding part of DATASET.inp supplies the following parameters:

section TASK

VAR / SWITCH	default	description
XMO	OFF	Calculates X-ray resonant magneto-optics
IT=integer	1	index number of atom type
CL=string	2p	Initial core level shell
NE3=integer	40	
EMAX3=real	8.0	
TSELECT=integer	0	use exclusively the resonant (TSELECT=1) or non-resonant (TSELECT=2) contribution to σ or both (TSELECT=0)
TAUCORE=real	tabulated	core level life time parameter $ au$ in [eV]
		if $l_{core} > 0$ specify 2 values for:
		$j_{core} = l_{core} - 1/2$ and $j_{core} = l_{core} + 1/2$
MECHECK	OFF	check matrix elements
section ENERGY	default	description
	uciauli	

GRID =integer	7	special Gaussian energy mesh for XMO calculations
NE=integer	-	number of E-mesh points
EMAX=real	-	real part of maximal E-value
IME=real	-	imaginary part of energy

The created spectroscopy file DATASET.rat can be plotted using **plot**. Some X-ray magnetooptical spectra (i.e. Faraday rotation, Kerr rotation etc.), will be printed as a **xmgrace** file. Any other calculations based on conductivity tensor $\sigma_{\alpha\beta}$ could be implemented into the **plot** program. Technical problems and hints of calculation of the XMO are the same as in the section 6.1.2.

Files used:

Filename	unit I/O	description
DATASET.inp	5 I	input file
DATASET.pot	4 I	input potential read in by $\langle POTFIT \rangle$.
DATASET.rat	7 O	file written by $\langle XRAYSPEC \rangle$ includes full conductivity tensor σ

Example

For calculations of X-ray magneto-optical effects of Fe the input file created by xband should look like the following one.

Running **kkrgen** the X-ray magneto-optical spectra will be written to the file DATASET.rat. The **plot** program via **xband** applied to DATASET.rat creates the following **xmgrace** files: xas_Fe_L23_eps_dia.agr, xas_Fe_L23_eps_off.agr, xas_Fe_L23_kerr.agr, xas_Fe_L23_n_dic.agr, xas_Fe_L23_sig_dia.agr, xas_Fe_L23_sig_dia.agr, xas_Fe_L23_refl.agr that can be viewed using **xmgrace**. As examples the diagonal part of conductivity tensor (file xas_Fe_L23_sig_dia.agr) and Kerr rotation (file xas_Fe_L23_kerr.agr) plotted by the **plot** program are presented below.

Figure 6.3: Left: the lower and upper panel shows the real and imaginary parts of the diagonal optical conductivity σ_{xx} at the L_{2,3}-edge of bcc-Fe. Right: the lower and upper panels show the resulting polar Faraday- and Kerr-rotation (θ) and ellipticity (ϵ) spectra. A Lorenzian broadening with 0.3 Ry for the core levels and a Gaussian broadening with 0.4 Ry were applied.

6.1.5 Non-relativistic Appearance Potential Spectroscopy

The calculation of Spin-Resolved Appearance Potential Spectra (SR-APS) can be performed using **kkrgen**, and requires two separate runs of the program. The procedure is based on the following expression for the SR-APS transition probability [23]:

$$P_{\sigma}(E_2) = \int_{E_a}^{E_b} dE \sum_{l,l',\sigma'} n_{l\sigma}(E) n_{l'\sigma'}(E') W_{l\sigma,l'\sigma'}(E,E') \quad , \tag{6.1}$$

with $E' = E_2 - E + E_c$. In this equation $n_{l\sigma}(E)$ is the angular momentum- and spin-resolved density of states (DOS) and $W_{l\sigma,l'\sigma'}(E, E')$ an effective cross-section. The range of energy for

the folding of the DOS curves is $E_a = E_F$ and $E_b = E_2 + E_c - E_F$, E_c and E_2 being the energies of the initial core and LEED states, respectively.

In the first run of **kkrgen**, one has to create and store the DOS data, as it is described in Sec. 3.7, using the Fermi energy as the lowest energy value, while the highest energy and the number of energy points are chosen by the user. Your DATASET.inp might look like

ENERGY GRID={3} NE=50 EMIN=0.7169 EMAX=2.0 IME=0.01

TASK DOS

The second run of **kkrgen** will use the generated **DATASET.dos** file so you should not change any of the parameters in the ENERGY token, but only to specify the new task as

TASK APS CL=2p IT=1 GAMMA=0.1 OUTGNU CALCLS

The main output is the file DATASET.aps that has to be supplied to the **plot** program. The **plot** program allows you to account for apparative and initial state finite life-time broadening and generates **xmgrace** files.

Final state life-time broadening is accounted for in **kkrgen**, by setting a positive value for GAMMA. The DOS curves are broadened with a linearly energy-dependent Lorentzian $W_L = \gamma(E_2 - E_F)$ prior to the self-convolution. The broadened DOS is written out in a format suitable for the **plot** program.

section TASK VAR / SWITCH	default	description
APS	OFF	calculates the Spin-Resolved Appearance Potential Spectra
CL=string	2P	initial core level
IT=integer	1	index of atom type for which the spectra should be calculated
GAMMA=real	-0.1	parameter for the linear energy-dependent broadening of DOS. If smaller equal zero, no broadening is done
OUTGNU	OFF	Generates auxiliary files containing the cross-sections $W_{l\sigma,l'\sigma'}(E,E')$ for a 20×20 energy grid
CALCLS	OFF	It calculates each angular momentum- and spin-projected APS and stores these spectra in separate files

Files used:

Filename	unit	I/O	description
DATASET.inp	5	Ι	input file
DATASET.pot	4	Ι	input potential read in by (POTFIT).
DATASET.dos	10	O/I	DOS file
DATASET.aps	7	Ο	calculated SR-APS spectra written by $\langle \text{NRAPS} \rangle$
DATASET.dos.brd	12	Ο	broadened-DOS file
$DL_1L_2S_1S_2$	51	Ο	If $OUTGNU$ has been set, the direct term (D),
$EL_1L_2S_1S_2$	52	Ο	the exchange term (E) ,
$DEL_1L_2S_1S_2$	53	Ο	the cross-term (D^*E) and
$WL_1L_2S_1S_2$	54	Ο	the total cross-section (<i>W</i>) are calculated and stored in a format suitable for the gnuplot program. The notation is $L_{1(2)} = s$, p, d, and $S_{1(2)} = U/D$ for spin Up or Down; e.g. EsdUD.
DATASET.aps. L_1L_2	7	0	If CALCLS has been set, the angular momentum- and spin-projected APS are stored in these files, with $L_{1(2)} = s$, p, d, They have to be supplied to the plot program and treated in the same way as the standard aps-file

Example

To calculate the spin-resolved apperance potential spectra for Ni the input file created by **xband** should look like this:

EMIN=0.7169 EMAX=2.0 ImE=0.01 TASK APS CL=2p IT=1 GAMMA=0.0

The file Ni.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the APS spectra will be written to file Ni_APS.Ni.L23.aps, which one converts than by using **plot** from within **xband** to Ni_APS.Ni.L23.agr, which then can be visualised by using **xmgrace** (See Fig. 6.4).

Figure 6.4: The lower and upper panel shows the spin-orbital- and spin-resolved non-relativistic APS spectra for Ni.

6.1.6 Auger Electron Spectroscopy

Non-relativistic Auger Electron Spectroscopy

Because APS is essentially an inverse Auger experiment, the calculation of non-relativistic Spin-Resolved Auger Electron Spectra (SR-AES) is done in a similar way as described above for the SR-APS [23, 24]. Note that in the case of SR-AES, the self-convolution is done in the occupied part of the valence band, that is, in creating the DOS file, the Fermi energy is now the highest energy value. The DATASET.inp can have for the first step the form

ENERGY GRID={3} NE=50 EMIN=0.2 EMAX=0.7447 IME=0.01

TASK DOS

and, for the second run of kkrgen, to obtain the SR-AES written out to DATASET.aes,

TASK NRAES CL=2p IT=1

Note that there is no DOS-broadening in the case of SR-AES. For further details see Sec. 6.1.5.

Example

For calculations of the non-relativistic SR-AES of Fe the input file created by **xband** should look like the following one.

```
******
 SPR-KKR input file Fe_NRAES.inp
 created by xband on Thu Apr 28 12:26:56 CEST 2005
*****
CONTROL DATASET = Fe
       ADSI = NRAES
POTFIL = Fe.pot_new
       PRINT = 0
      BZINT= POINTS NKTAB= 250
TAU
ENERGY GRID={3} NE={50}
      EMIN=0.2 EMAX=0.7458 ImE=0.01 Ry
# NOTE: run the program first to create the DOS
     using this input file as it is i.e. with TASK DOS for the second run supress the line with TASK DOS (insert #)
#
#
      and activate the line with TASK NRAES (remove #)
#
TASK
      DOS
#TASK
      NRAES IT=1 (Fe) CL=2p
```

In the first step one has to calculate the DOS from the bottom of the valence band up to the fermi level. Running **kkrgen** the DOS will be written to the file DATASET.dos. In the second step one has to comment the line TASK DOS and uncomment the line TASK NRAES. Then running **kkrgen** the non-relativistic SR-AES will be written to the file DATASET.aes. The **plot** program via **xband** applied to DATASET.aes creates the following **xmgrace** file DATASET.aes.agr. As example the broadened SR-AES spectra of bcc-Fe is shown in Fig. 6.5.

To represent intrinsic lifetime effects Lorenzian broadening has been applied with an energydependent broadening parameter $W=A+B^*(EF-E)^2$ where A=0.5 eV and B=0.3 eV. The finite apparative resolution has been represented by Gaussian broadening with the parameter 0.4 eV for the full width at half maximum.

Figure 6.5: In the upper panel one can see the angular momentum contributions per spin for bcc-Fe. Spin-resolved spectra are shown in the down panel.

Relativistic Auger Electron Spectroscopy

Using kkrgen allows to calculate spin resolved core-valence-valence (CVV-AES) auger electron spectra [24]. The present implementation deals only with angle integrated spectra with the single-site scattering approximation used for the final time-reversed-LEED states. The specific part of the input file DATASET.inp may look like this

ENERGY GRID={3} NE=50 EMIN=-0.1 IME=0.01

TASK AES CL=2p IT=1

supplying the following parameters: section TASK						
VAR / SWITCH	default	description				
AES	OFF	Calculates spin resolved fully relativistic AES spectra				
IT=integer	1	atom type				
CL=string	2P	initial core level shell				

PRINTME	OFF	writing coulomb matrix elements in the ME* files with $* = 1,, NCST$ and NCST the number of core states involved.
NEME	10	Number of energies for which the matrix elements will be calculated

Calculated spectra are written to the file DATASET.aes. Use **plot** program to obtain spectra in a **xmgrace** file.

Files used:

Filename unit	I/O	description
DATASET.inp 5	T	input file
DATASET.pot 4	I	input potential read in by (POTFIT).
DATASET.aes 7 ME* 24 SCRATCH 99	0 0/I 1/0	calculated AES spectra written by $\langle AES \rangle$ coulomb matrix elements (* = 1,, NCST) τ matrix for valence states
	1/0	

Example

For calculations of the fully relativistic CVV-AES of Fe the input file created by **xband** should look like the following one.

Then running **kkrgen** the fully relativistic CVV-AES will be written to the file DATASET.aes. The **plot** program via **xband** applied to DATASET.aes creates the following **xmgrace** file DATASET.aes.agr. As examples the broadened SR-AES spectra of bcc-Fe is shown in Fig. 6.6.

To represent intrinsic lifetime effects Lorenzian broadening has been applied with an energydependent broadening parameter $W=A+B^*(EF-E)^2$ where A=0.1 eV and B=0.01 eV. The finite apparative resolution has been represented by Gaussian broadening with the parameter 0.4 eV for the full width at half maximum.

Figure 6.6: In the upper panel one can see the spin-resolved spectra for bcc-Fe and in the down panel the difference between the spin-up and spin-down intensities is plotted.

NOTE

One should use at least 50 energy points (NE=50) and NEME should be set at least 30 to get reasonable results.

6.1.7 X-ray Photoemission spectroscopy

Valence Band X-ray Photoemission Spectroscopy

kkrgen or **embgen** allows to calculate spin resolved valence band photoemission spectra in the angle integrated mode [25]. Usually the spectra are calculated for three different

polarisations (right, left circularly polarised light and z-polarisation) within the single-site approximation for the final states. The input file should supply the following parameters:

section TASK

VAR / SWITCH	default	description
VBPES	OFF	Calculate angle integrated spin resolved VB-XPS spectra
EPHOT =real	1253.6	photon energy in eV 1: 1253.6 eV Mg- $K_{\alpha_{1,2}}$ 2: 1486.6 eV Al- $K_{\alpha_{1,2}}$
USETAUNN	OFF	single site approximation for final states suppressed

The resulting spectroscopy file DATASET.xps can be further processed using **plot**. **Files used:**

Filename	unit	I/O	description
	-	т	· · · · · · · · · · · · · · · · · · ·
DATASET.Inp	5	I	input file
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET.pes	7	Ο	calculated VBXPS spectra written by $\langle VBXPS \rangle$.
DATASET.tau.nnf.EPHOT	20	I/O	au file for final states

Example

To calculate the angular-intergated VB-XPS for the fcc-Ni the input file created by **xband** should look like this:

TAU BZINT= POINTS NKTAB= 250 ENERGY GRID={3} NE={200} EMIN=-0.2 ImE=0.01 Ry TASK VBPES EPHOT=600

The file Ni.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the VB-XPS spectra will be written to files Ni_VBXPS.xps, which then can be visualized using **plot** from within **xband**. As a result of the **plot** program **xmgrace** files will be created:

- Ni_VBXPS_vb-xps.agr
- Ni_VBXPS_vb-xps_spin.agr

First file contains polarization averaged total and component resolved spectra. Second file contains spin- and polarization resolved VB-XPS spectra. The meaning of the legend is following:

- $POL(+) = I_+^{\uparrow} I_+^{\downarrow}$
- $TOT(+) = I_+^{\uparrow} + I_+^{\downarrow}$
- etc. for all other polarizations

Figure 6.7: Left: spin and angle integrated VB-XPS spectrum of fcc-Ni for a photon energy of 600 eV. Right: Corresponding spin- and polarization-resolved spectrum.

CHAPTER 6. CALCULATING SPECTROSCOPIC PROPERTIES

Core Level X-ray Photoemission spectroscopy

kkrgen and **embgen** allow to calculate spin-resolved core level photoemission spectra [26]. The programs allow one to calculate CL-XPS in the angle integrated mode. The typical part of the input file DATASET.inp looks like this:

TASK CLXPS CL=2P EPHOT=1100 IME=0.03 USETSS

supplying the following parameters: section TASK

VAR / SWITCH	default	description	
CLXPS	OFF	Calculate the core level X-ray photoemission spectra	
IT=integer	1	atom type to calculate	
CL=string	2P	initial core level shell	
EPHOT=real	1253.6	photon energy in eV	
USETSS	OFF	single site approximation for final states	

The resulting spectra are written to the data-file DATASET.xps. Use **plot** for further processing and creating a corresponding **xmgrace** file.

Files used:

Filename	unit	I/O	description	
DATASET.inp	5	Ι	input file	
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.	
DATASET.pes	7	0	calculated CL-XPS spectra written by $\langle CLXPS \rangle$	

Example

To calculate the angular-intergated CL-XPS for the fcc-Ni at the $L_{2,3}$ -edge the input file created by **xband** should look like this:

```
SPR-KKR input file
               Ni_VBXPS.inp
 created by xband on Mon May 23 16:14:14 CEST 2005
#
*****
                                 *****
CONTROL DATASET = Ni
     ADSI = VBXPS
     POTFIL = Ni.pot
     PRINT = 0
     BZINT= POINTS NKTAB= 250
TAU
ENERGY
     GRID={3} NE={200}
     EMIN=-0.2 ImE=0.01 Ry
TASK
     VBPES
         EPHOT=600
```

The file Ni.pot has to contain the (usually converged) potential created by **kkrscf**. Running **kkrgen** the CL-XPS spectra will be written to files Ni_CLXPSNi.L23.xps, which then can be visualized using **plot** from within **xband**. As a result of the **plot** program **xmgrace** file Ni_CLXPSNi.L23.xps_Ni.igeo_1.agr will be created.

Figure 6.8: Top: angle integrated $L_{2,3}$ CL-XPS spectrum of fcc-Ni for a photon energy of 1253.6 eV. Bottom: the corresponding magnetic circular dichroism spectra.

6.1.8 Magnetic Compton profile

The Magnetic Compton Profile $J_{mag}(P_z)$, which is the one-dimensional projection of spinresolved momentum density, is calculated using **kkrgen** with appropriate input and potential files. The specific part of the input file DATASET.inp supplies the following parameters

section TASK

VAR / SWITCH	default	description
COMPTON	OFF	calculate the Magnetic Compton Profile
PNVEC	{0,0,1}	scattering direction vector \hat{p}_z . This vector has to be parallel to the magnetization
NPN	50	number of grid-points along \hat{p}_z direction
NPP	50	number of grid-points along \hat{p}_x and \hat{p}_y direction perpendicular to \hat{p}_z
CP2D	OFF	calculate the 2D projection of the $n^{\uparrow} - n^{\downarrow}$ perpendicular to PNVEC.
section ENERGY		
VAR / SWITCH	default	description
GRID =integer	{5,3}	5: circular energy path in complex plane 3: linear energy path parallel to real axis
NE=integer	{30,50}	number of E-mesh points. Note: these values of E-mesh points ensure the convergency of the spectra.
EMIN=real	-	real part of lowest E-value
splitss	ON	set-up 2 paths for energy integration dealing separately with the backscattering and single site part of the Green's function. This avoids calculation of the matrix elements for the irregular wave function.

Example

For calculations of magnetic Compton profile of Fe the input file created by xband should look like the following one.

```
*****
 SPR-KKR input file
                 Fe_COMPTON.inp
 created by xband on Wed Apr 27 17:44:57 CEST 2005
#
******
CONTROL DATASET = Fe
      ADSI = COMPTON
      POTFIL = Fe.pot
      PRINT = 0
STRCONST ETA=0.30 RMAX=3.30 GMAX=3.30
TAU
      BZINT= POINTS NKTAB= 250
      GRID={5,3} NE={30,50}
ENERGY
      EMIN=-0.2 Ry
      COMPTON PNVEC = { 0.0, 0.0, 1.0 }
TASK
      PNMAX=5.0
             NPN=50 PPMAX=10.0
                               NPP=50
```

kkrgen writes $J_{up}(P_z)$, $J_{down}(P_z)$, $J_{sum}(P_z)$ and $J_{mag}(P_z)$ to files (see below). Use **plot** to account for experimental and intrinsic broadening and to reformat the spectra to be viewed via **xmgrace**. As an example, the magnetic Compton profile for Fe along [001] direction is shown in Fig. 6.9.

Files used:

Figure 6.9: Magnetic Compton profile for Fe along [001] direction. The MCP spectra convoluted with a Gaussian of FWHM 0.3 a.u (left) is compared with the corresponding unbroadened MCP (right).

CHAPTER 6. CALCULATING SPECTROSCOPIC PROPERTIES

Filename	unit	I/O	description
DATASET.inp	5	Ι	input file described above
DATASET.pot	4	Ι	input potential read in by (POTFIT).
DATASET.mcp	50	0	Compton profiles J_{up} , J_{down} , J_{sum} and J_{mag} used by plot
DATASET_data.mcp	11	0	auxiliary file containing Compton profiles as datasets
DATASET_mcp2d.dat	21	Ο	The file containing 2D Compton profiles written if CP2D is active

NOTE: The calculations of the angle integrated VBXPS presented in this section are more relyable for the photon energy range from $\approx 200 \text{ eV}$ to $\approx 1500 \text{ eV}$. For a more general implementation of the angle resolved and angle integrated photoemission see section 6.

6.1.9 Positron annihilation

The quantity measured in 2D-ACAR experiment is usually identified with the 2D projection of the electron-positron momentum density $n^{2\gamma}(p_x, p_y)$ in a direction perpendicular to the photon scattering direction. In order to calculate the $n^{2\gamma}(p_x, p_y)$ one has to follow the next steps:

Calculation of the positron energy

Run **kkrgen** in order to get the dispersion relation for the positron. Positrons are supposed to have the energy at the bottom of the band. The specific part of the input file DATASET.inp may look like this:

MODE POSITRON TASK EKREL EMIN=-0.2 EMAX=1.0 NE=200 NK=300 KPATH=5

The description of the sections TASK and ENERGY are given in section 3.5

Example

For calculations of the positron energy for V the input file created by xband should look like the following one.

Files used:

•

unit I/O description

DATASET.inp	5	Ι	input file described above
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET.bnd	10	0	dispersion relation $E(\vec{k})$ together with the informa-
			tion on the path in \vec{k} -space. Use plot to obtain the
			corresponding xmgrace file.

Preparation of the wave-function and scattering path operator τ for the positron

Run kkrgen with the following specific part of the input file DATASET.inp:

```
MODE POSITRON
ENERGY GRID={3} NE={1} EMIN=xxx EMAX=xxx IME=0.01
TASK DOS POSANIPREP
```

where xxx is the energy of the positron determined in the previous step.

Example

For calculation of the positron wave function and τ matrix for V the input file created by xband should look like the following one.

```
*****
 SPR-KKR input file
                V_DOS.inp
#
 created by xband on Thu Sep 18 13:22:16 CEST 2003
#
*****
CONTROL DATASET = V
      ADSI = COMPTON
POTFIL = V.pot
      PRINT = 0
TAU
     BZINT= POINTS NKTAB= 250
STRCONST ETA=0.30 RMAX=3.30 GMAX=3.30
MODE
     POSITRON
ENERGY GRID={3} NE={ 1 }
     EMIN= 0.4279 EMAX=0.4279 ImE=0.01
TASK
     DOS POSANIPREP
```

Files used:

Filename	unit I	/0	description	
DATASET.inp	5	I	input file described above	-
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.	
DATASET.pan	80	0	au matrix and wave function of the positron are written in this file.	

Calculation of the 2D-projection of the electron-positron momentum density

Run kkrgen with the following specific part of the input file DATASET.inp:

ENERGY GRID={5,3} NE={30,50} EMIN=-0.2 TASK COMPTON POSANI NPN=50 NPP=50 MD2D SHFT PPMAX=5.0

section TASK

VAR /	SWITCH	default	description
-------	--------	---------	-------------

CHAPTER 6. CALCULATING SPECTROSCOPIC PROPERTIES

COMPTON	OFF	calculate the Magnetic Compton Profile
POSANI	OFF	calculate the electron-positron density of momentum
MD2D	1D	calculate the 2D projection of the electron-positron density of momentum
SHFT	OFF	$n^{2\gamma}$ (p_x, p_y) is represented with the point (0,0) in the middle of the p_x, p_y plane
PNVEC	{0,0,1}	photons scattering direction vector \hat{p}_z .
NPN	50	number of grid-points along \hat{p}_z direction
NPP	50	number of grid-points along \hat{p}_x and \hat{p}_y direction perpendicular to \hat{p}_z \hat{p}_z direction
PNMAX	5.0	the length of the \hat{p}_z vector (in atomic units).
PPMAX	10.0	the length of the \hat{p}_x and \hat{p}_y vectors (in atomic units).

section ENERGY

VAR / SWITCH	default	description
GRID =integer	{5,3}	5: circular energy path in complex plane 3: linear energy path parallel to real axis
NE=integer	{30,50}	number of E-mesh points. Note: these values of E-mesh points ensure the convergency of the spectra.
EMIN=real	-	real part of lowest E-value
splitss	ON	set-up 2 paths for energy integration dealing separately with the backscattering and single site part of the Green's function. This avoids calculation of the matrix elements for the irregular wave function.
Files used:		
Filename	u	nit I/O description

CHAPTER 6. CALCULATING SPECTROSCOPIC PROPERTIES

DATASET.inp	5	Ι	input file described above
DATASET.pot	4	Ι	input potential read in by $\langle POTFIT \rangle$.
DATASET.pan	80	Ι	au matrix and wave function of the positron.
DATASET_pa2d.dat	21	0	2D - $n^{2\gamma}$ (p_x, p_y) data file in a format suited for
			gnuplot.
DATASET_data.mpa	50	0	1D - $n^{2\gamma}$ (p_z) data file.

Example

For calculations of the 2D electron-positron momentum density perpendicular to [001] direction in V the input file created by xband should look like the following one.

As an example, the 2D electron-positron momentum density perpendicular to [001] direction for V is shown in Fig. 6.10.

Figure 6.10: The 2D electron-positron momentum density of bcc-V perpendicular to the [001] direction.

6.2 Calculation of spectroscopic properties included in kkrspec

6.2.1 General remarks

The **kkrspec** package is based on the one step model photoemission program as described in [27, 28, 29]. To run the **kkrspec** package in addition to the potential file DATASET.pot you need two files: DATASET.inp and in_struc.inp. in_struc.inp is a structure file which includes independent on the **kkrscf** mode the information on the semi infinite 2D structure used in **kkrspec** (see Sec. 6.2.2). Right now the **kkrspec** program includes calculations of the various properties. Those can be supplied by the corresponding part of DATASET.inp:

section TASK

VAR / SWITCH default description

ARPES

angle resolved photoemission spectroscopy

AIPES		angle integrated photoemission spectroscopy
SPLEED		spin polarized LEED (experimental feature)
BAND		band structure calculations (experimental feature)
INPVER	1	use 0 if you would like to use an old input . inp from old rslab
STRVER	1	0: code will look for in_struc.inp; 1: in_struc.inp will be generated automatically
		In the case of STRVER=1 following parameters can be used in addition
IQ_AT_SURF	1	Specify atomic site IQ (from DATASET.pot) that should be at the topmost layer of the surface
MILLER_HKL	(0,0,1)	Miller indices for a given surface (created from bulk 3D potentialDATASET.pot)
CRYS_VECS	.TRUE.	Miller indices with respect to crystalographic primitive vectors

6.2.2 Structural information

kkrspec is based on the layered Korringa-Kohn-Rostokerformalism. It always runs for seminfinite 2D surfaces. Structural information about the 2D system in this mode will be stored in the in_struc.inp file. Depending on the option STRVER this file will be either automatically created (STRVER=1) or read in (STRVER=0). In the case of the automatic generation of in_struc.inp there are two possible cases:

- **kkrscf** calculation is done for the 3D bulk. The in_struc.inp for 2D surface is created from 3D bulk by specifying the corresponding Miller h,k,l indices and site IQ for the termination of the surface. Please note that this is only an approximation for the surface calculations as you will use for all layers a bulk like potential. However for the high photon energies (soft and hard x-ray PES) it is a quite good valid approximation on the other hand for the UPS regime typically you will get already reasonable spectra.
- In the case you performed **kkrscf** calculations for semi-infinite 2D System (LIV) **kkr-spec** will create in_struc.inp automatically from the structural data of the 2D system. Please note that the surface (vacuum) potentials will be replaced by the model surface barrier.
- In the case of STRVER=0 the **kkrspec** code will look for in_struc.inp file. Please note that all atomic positions are with respect to the 2D lattice vectors. The coordinate system is a lefthanded one with Z=0.0 at surface and increasing inside the stack of

layers. Each layer has to have an atom at the origin x=0.0 y=0.0 and relative shift between the layers are achieved by the sep.

Summary of structural information

- θ_e is defined with respect to the surface normal \hat{n}
- ϕ_e with respect to x
- θ_{light} is defined with respect to the *z* axis, e.g. if you define θ_{light} with respect to \hat{n} you should use $-\theta_{\hat{n}}$ in the input file. Please note that normal incidence corresponds to $\theta_{light} = 0 deg$. Often you can use $\theta_{\hat{n}}$ and ϕ_{light} instead, but you will have to take care about definition of the circularly polarised light. In doubt please check "vacuum–wave–vector of the photon field" and "vector potential of the photon field" as given in the spc–output file.
- Structural information is done with respect to the *z*,*x*,*y* coordinate system. In general you should check actual vectors \vec{a}_1 and \vec{a}_2 as well as reziprocal vectors. This information you can find in the spc–output file. ("reciprocal basis")
- p-polarised light: polarisation of the light in the scattering plane (e.g. parallel and perpendicular component with respect to surface)
- s-polarised light: polarisation of the light parallel to the surface plane (e.g. only parallel component)

Please find bellow the description of an example in_structur.inp for the bcc Fe(001) surface.

```
# spa
     0.527000E+01
spa is the lattice constant a.
spa in a.u.
# 2d real space lattice vectors: !
# (ax, ay)
     0.100000E+01     0.000000E+00
# (bx, by)
     0.000000E+00     0.100000E+01
```

These are the 2-dimensional real space lattice vectors $\vec{a} = (a_x, a_y)$ and $\vec{b} = (b_x, b_y)$) describing the layer structure corresponding to the investigated surface. The following input will depend strongly on the type of lattice and the number of atoms in different layer. For a single atom structure like Fe(100) it looks like the following (with remarks on more complicated cases):

```
# lays
1
```

lays gives the number of different layers in the structure. The following input is then repeated lays times.

```
# natl(1)
1
```

natl(lay) is the number of atoms in the layer with number lay=1, ..., lays. The following input is then repeated natl(lay) times.

```
# iat(1,1)
    1
# position: z, n, m, iq
    0.000000E+00 0.00000E+00 0.00000E+00
```

iat (ia, lay) is the type of atoms in locations ia=1, 2..natl(lay). The position (pos(j,iat), j=1,3) is the disposition of the atoms in locations 1, 2, ..., natl(lay) along (z, n, m) in units of spa, \vec{a}, \vec{b} with respect to the layers unit cell origin. So called rumpled layer are created if the z positions of atoms in the same layer are different. Note: There may be different number of atoms in different layers. The following input describes the sequence of layers from which the bulk crystal is build.

 \Rightarrow IQ: atomic site as defined in DATASET.pot

```
# lays layb
    1    1
# surface barrier at sep(i,0): z, n, m
    0.290000E+00    0.000000E+00    0.000000E+00
```

lays is the number of layers in the overlayer plus bulk repeat unit sequence, and

layb is the first layer of the bulk repeat unit in sequence. The Zero layer (sep(i,0), i=1,...,3, iseq(0)) describes the vacuum located at (z, n, m) in units of spa, \vec{a}, \vec{b} .

Note: z > 0 is the distance of the surface from the topmost layer. At present, this has to be the same like in in_bar.inp.

The following input is repeated lays times.

```
# iseq(1)
    1
# sep(i,1): z, n, m
    0.500000E+00    0.500000E+00    0.500000E+00
# end structure
```

iseq(lay) is the layer type. (sep(i, lay), i=1,..., 3) is the displacement of the origin of the unit cell in the next layer into the bulk from the unit cell origin of the current layer, along (z, n, m) in units of spa, \vec{a}, \vec{b} .

6.2.3 Angle resolved photoemission calculations

Calculations are done using the TASK ARPES by **kkrspec** package. Results of calculations are written in DATASET.spc file. Description of variables: colons are written in the header of spc file There is an additional output file DATASET.out with details of the **kkrspec** run. In order to run ARPES calculations there are general sections of the input file. **section EN-ERGY**

VAR / SWITCH	default	description
EMIN_EV		minimum of the energy window in eV with respect to the Fermi level
EMAX_EV		maximum of the energy window in eV with respect to the Fermi level
NE		number of energy points
IMV_FIN_EV	1.0	imaginary part of the potential in eV (final state), alternatively you can use VIH (in eV) or IMV_FIN (in Ry)

CHAPTER 6. CALCULATING SPECTROSCOPIC PROPERTIES

IMV_INI_EV	0.1	imaginary part of the potential in eV (initial state), alternatively you can use VIL (in eV) or IMV_INI (in Ry)
EWORK_EV	5	inner potential of the bulk crystal in eV

section SPEC_EL

VAR / SWITCH	default	description
THETA	45	scattering angle
PHI	90	scattering angle
NT	1	numbers of angular values for a rotation diagram C nt: polar, np: azimuth
NP	1	numbers of angular values for a rotation diagram C nt: polar, np: azimuth
POL_E	ΡZ	

section SPEC_EL Expert Mode

VAR / SWITCH	default	description
TYP	1	crystal coordinats in splout, xpsrun, or upsrun 0: i(e) diagram, 1: rotation diagram, \rightarrow phi scan 2: scattering-angle diagram \rightarrow theta scan 3: orthonormal projection — 3,4 only for angular resolved 4: stereographic projection — pe (ups, xps) note: nt=np \rightarrow nx,ny
ISTR	0	beam number (h,k)
POLO	(0,0,0)	initial pol.
POLOL	(0,0,0)	initial pol. in the laboratory system
Q1	1+0i	amplitudes of the photoelectron used in spin polarized calculations
Q2	0+0i	amplitudes of the photoelectron used in spin polarized calculations

Q3	0+0i	amplitudes of the photoelectron used in spin polarized calculations
Q4	1+0i	amplitudes of the photoelectron used in spin polarized calculations

- set imaginary part of potential VIL and VIH for initial and final state to 0.0.
- layer1 set to number of layers in your surface
- number of reciprocal vectors ganz should be high enough. Always choose your vectors with respect to the parameters.
- lanz1 and lanz2 set to 1 (Note: for alternative names of variables and sections see See. ARPES)

section SPEC_PH

VAR / SWITCH	default	description
THETA	45	
PHI	90	
EPHOT	21	photon energy in ev
POL_P		polarization of the light (P,S,C+,C-)

section SPEC_PH Expert Mode

VAR / SWITCH	default	description
ALQ	45	alignment of polarization vector or pol.ellipsis
DELQ	0	phase shift between real and imaginary part of e-vector, delq=90 for circular polarized light
NPOL	1	controls the polarization and dichroism 0: unpolarized and p-s dichroism for the calculation 1: p-pol or rcp or elliptical (depends on icirc, etc) 2: s-pol or lcp or elliptical (depends on icirc, etc) 3: dichroism (cdad, ldad)

CHAPTER 6. CALCULATING SPECTROSCOPIC PROPERTIES

ICIRC	1	controls polarisation / ellipticity of the photons 0: elliptically pol. light: alq, delq arbitrary 1: linear pol. light: alq arbitrary, delq=0 2: circular pol. light: alq=45, delq = 90
IDREH	0	idreh controls helicity of the photons 1, -1: sigma+, sigma- ⇒ right or left circular polarization (note: lcp, rcp are exchanged in some books) 0: linearly polarized (equals icirc=1)
IFSP	0	0 fixed photon azimuth angle 1: variable (equal to electron) azimuth angle
THETA_FIX		light and electrons are at fixed polarization angle
section SPEC_ST	R	
VAR / SWITCH	default	description
N_LAYDBL NLAT_G_VEC N_LAYER		number of reciprocal lattice vectors number of bulk layer in a photoemission calculation
section SPEC VAR / SWITCH	default	description
SPOL	2	

As mentioned above, the surface region is neighboured by the model surface barrier. Here are the corresponding parameters. Note: in the old vslab version those parameters have been included in file in_bar.inp with the following structure: This file defines the type and parameter for the surface potential. It contains the following four lines with data.

```
# ibar
1
# epsx, barab
0.1000000E-01 0.2900000E+00
# zpar(i),i=1,3
0.0000000E+00-0.9000000E+00 0.9000000E+00
# bpar(i),i=1,3
0.1340000E+01-0.2500000E+01 0.1018000E+01
```

The meaning of these parameters is:

ibar	controls type of surface barrier:			
	= 0 step potential,			
	= 1 rm - barrier [30],			
	= 2 jj - barrier.			
epsx	tolerance for barrier integration.			
barab	distance of surface layer from the first bulk-layer.			
(1.0)				

zpar(1:3) rm potential parameter.

bpar(1:3) jj potential parameter.

Notes: The rm potential parameter may not be changed. The jj potential is actually not in use. The program will switch automatically to the rm potential.

section SPEC_STR			
VAR / SWITCH	default	description	
SURF_BAR			
BARABU	25	spin up: distance of surface layer from the first bulk-layer	
BARABD	25	spin down: distance of surface layer from the first bulk-layer	
IBAR	1	0: step, 1: rm-barrier, 2: rm + gauss	
EPSX	0.005	tol for barrier integration	
ZPARU	(0,-1,1)	spin up: rm potential parameter	
ZPARD	(0,-1,1)	spin down: rm potential parameter	
BPAR	(1.34,-2.0,1.01	8) gaussian barrier parameter (distance, width, height)	

6.2.4 Spin polarized LEED calculations

This TASK SPLEED is an experimental feature. Most of the parameters are the same as in Sec. angular resolved photoemission spectroscopy

6.2.5 Band structure calculations

In the case you performed 3D **kkrscf** calculations you can use **kkrspec** also to calculate band structure. In particular **kkrspec** allows to plot off normal and surface projected band structue. In order to perform these calculations you should set following parameters.

7 The post-processing program **plot**

Many of the files created by one of the **SPRKKR** programs may be further processed using the program **plot**, as for example the files DATASET.dos containing the component, spin and angular momentum resolved DOS. These files can be fed directly to **plot** by calling:

plot < Fe.dos

A keyword in the first line of the data file tells **plot** how to interprete and process the data. As a results one gets a number of plot files (*.agr) that can be viewed, further processed and printed using **xmgrace**. **xmgrace** allows in particular to read in addition experimental data from other files that can be compared with the theoretical results.

Often it is necessary to supply **plot** with additional parameters to control the post-processing. This can be achieved by calling **plot** for example:

plot < Fe.dos.pin

with a control file Fe.dos.pin that may look like this:

```
DATASET Fe_DOS.dos
# remove leading # of sections and parameters to activate and insert values
#PLOT
                               # plot parameters
    EMIN =
                               # E plot range
#
    EMAX =
                              # E plot range
    SCALE =
                               # scaling factor for functions
#
OUTPUT
                               # output control
    NOHEADER
                               # suppress header (xmgr-titles)
    TABLE
                               # tabulate curves in file for export
                               # tabulate JDOS in file for export
    JDOS
```

For this control file the same rules as for the **SPRKKR** input files apply (see chapter 2), with the available sections listed below.

section DATASET

VAR / SWITCH default description

FILENAME - dataset file name

This information is obligatory if a control file is used. In this case **plot** reads first the control file and then opens the dataset file to read the data.

section PLOT VAR / SWITCH	default	description
EMIN =real	from data	lower boundary of plotted energy range
SCALE=real	- -	scaling factor for functions

For most dataset file type **plot** ignores these variables in the control file and sets the energy range to be plotted according to the supplied data. Use **xmgrace** in this case to set the energy rangy.

section OUTPUT

VAR / SWITCH	default	description
NOHEADER	OFF	suppress the header i.e. the titles in the xmgrace -plots
TABLE	OFF	tabulate DOS or XAS curves in file for export
JDOS	OFF	tabulate JDOS in file for export if a DOS - file is processed

section **BROADEN**

VAR / SWITCH	default	description
WG=real	-	Gaussian broadening parameter (in eV) to account for apparative broadening when dealing with electronic spectra. Used for TASK: XAS, XES, XMO, XRS, APS, NRAES, AES, CLXPS, VBXPS.
WL={real,real}	-	Lorentzian broadening parameter (in eV) to account for a finite lifetime when dealing with core level spectra. In case of a spin-orbit split core level, supply 2 values for $j_{core} = l_{core} - 1/2$ and $j_{core} = l_{core} + 1/2$. Used for TASK: XAS, XES, XMO, XRS, APS, NRAES, AES, CLXPS.

WLAES= {real,real}	-	Lorentzian broadening parameters Γ_0 and γ (in eV) to account for a finite lifetime when dealing with Auger electron spectroscopy. The energy dependent broadening is done for $\Gamma(E) = \Gamma_0 + \gamma(E - E_F)^2$. Used for TASK: NRAES, AES.
WLVBXPS= {real,real}	-	Lorentzian broadening parameters Γ_0 and γ (in eV) to account for a finite lifetime when dealing with valence band photoemission spectra. The energy dependent broadening is done for $\Gamma(E) = \Gamma_0 + \gamma(E - E_F)^2$.
MLD	OFF	Switch to deal with the magnetic linear dichroism instead the circular one. Used for TASK: XAS, XES, CLXPS.
MTV	ON	Switch to create the Bloch spectral function in a format suited for plotmtv . This is the default. Used for TASK: BLOCHSF.
XMATRIX	OFF	Switch to create the Bloch spectral function in a format suited for xmatrix . Used for TASK: BLOCHSF.

The program **plot** is part of the **xband** package. It is therefore most convenient to run **plot** via **xband** allows to pass the data file directly to **plot** and to create the appropriate **xmgrace** files that way (left mouse click). Alternatively, one can invoke a menu that asks for the parameters given above (middle mouse klick) to create a control file first and then the **xmgrace** files. Because **xband** reads the keyword from the data file, the menu asks only for specific parameters.
8 Examples

The following example gives you a short introduction how to use the **SPRKKR**-package in connection with **xband**. It is assumed that you installed **xband** and that the programs **kkrscf** and **kkrgen** are compiled (see 9.1) and copied to your directory [~]/bin.

Start xband.

Click CREATE SYSTEM Click Structure type. Select BCC by mouse click. Insert 5.4 in the entry field for a. Click CONFIRM Click input OK – GO ON Click all done – RETURN Click the line 0.000000 0.000000 0.000000 1 1 а in the table at the bottom. Click specify occupant Click | Fe |. Click DONE – RETURN You have now created the system file **Fe.sys** that is listed on the info screen.

Click SPR-KKR to continue. Click create input. Click the scf button in the TASK field (left column). Click write inpfile quit.

CHAPTER 8. EXAMPLES

This step created the input file Fe_SCF.inp together with a potential file Fe.pot, that contains enough information to start the SCF calculations.

If you press write+edit inpfile quit instead, the editor is invoked and you may check or modify the input file.

Click kkrscf to invoke the menu and select run (interactive). This starts in a separate yellow xterm window the kkrscf program. While the program runs, you may check its progress by clicking out-file menu and selecting grep "ERR" Fe_SCF.out. After kkrscf completed successfully you may destroy the yellow window – the output is kept in Fe_SCF.out.

The converged potential is now stored in Fe.pot_new. Click files and select Fe.pot_new. Change the file name in the entry field (right bottom) to Fe.pot and click move to move Fe.pot_new to Fe.pot. This step is done because the default name for the potential file is Fe.pot.

Click create input.

Click write inpfile quit.

This step creates the input file Fe_DOS.inp for a DOS calculation.

Click kkrgen and select file run (interactive) option. As before **kkrgen** runs in a yellow xterm window and writes output simultaneously to Fe_DOS.out. In addition a data file Fe_DOS.dos will be created.

Click **plot** to invoke the plot menu. Select Fe_DOS.dos in the datafile list by left mouse click. This invokes the program **plot** that creates a file Fe_DOS.dos_Fe.agr listed in the right file column. Select this file by left mouse click. This last step invokes the graphics program **xmgrace** that should now display the spin-resolved DOS of bcc-Fe.

Further examples for the use of the **SPRKKR**-package can be downloaded from http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR/examples.html. The downloaded file has to be unpacked using gunzip and tar. It contains a postscript file describing a number of applications of the **SPRKKR**-package with the corresponding input and output files included. More information can be found in the enclosed README-file.

9 Technical details, installation and dimensioning

9.1 Technical details

The **SPRKKR**-package is a collection of programs written throughout in FORTRAN 77 using some FORTRAN 95 extensions, that make the use of a FORTRAN 95 compiler unavoidable. The program package has been used so far under various Unix platforms (IBM, Compac/DEC, PC (Linux), Fujitsu, Cray) without problems, but is mainly developed and tested on PC Linux with Intel FORTRAN compiler. Of course the required computer resources depend on the size of the investigated system. For many applications a PC under Linux with around 1-2 GHz, 512 MB core memory and 300 MB disk space should be sufficient.

The **SPRKKR**-package is split into the programs **kkrscf**, **kkrgen**, **kkrchi**, **kkrspec**, **embgen** and **embscf** with the corresponding main programs in the files kkrscf.f, kkrgen.f, kkrchi.f, kkrspec.f, embgen.f and embscf.f respectively, that in turn are generated automatically from the generic file kkrmain.f. The programs have many subroutines in common. Most of the subroutines are in separate files with the file name identical to the name of the subroutine. All source files are collected in one single directory together with a makefile and several auxiliary files.

9.2 Installation

9.2.1 Required libraries

The SPRKKR-package uses the mathematical libraries BLAS and LAPACK.

SPRKKR uses MPI libraries for multi processor calculations. For compiling and using **SPRKKR**, an MPI environment like <code>openmpi</code>, including its development packages, has to be installed.

If these libraries are not available on your computer, you usually can use your Linux's software management to install them.

9.2.2 Unpacking

To install the **SPRKKR**-package, create a program directory, copy the program package file to that directory and unpack it:

```
mkdir progdir
cp sprkkr.tar.gz progdir
cd progdir
tar -xvfz sprkkr.tar.gz
```

9.2.3 Preparing the make file

To configure the makefile, copy the supplied make.inc_example to make.inc and adapt it to your system.

Use the variable LIB to supply the necessary information where to find the mathematical libraries BLAS and LAPACK on your computer.

Even if not using MPI, you have to specify the correct path to mpif.h with the INCLUDE variable, e.g. INCLUDE= -I/usr/lib/openmpi/include

The variables FC and LINK contain the FORTRAN compiler. When using openmpi, use the compiler wrapper mpif90.openmpi.

Depending on your FORTRAN compiler, you have to adapt the compiler flags in the variable FFLAGS. Confer to your compiler's documentation to find settings for optimization and debugging that fit best to your needs and your CPU.

Specify via the variable BIN in which directory you want to keep the executable programs, for example by setting BIN=. or $BIN=\sim/bin$.

Specify a string to be added to each program name with the VERSION variable, e.g. a version name. Using an empty string, VERSION= ,yields the plain program name **kkrgen** etc.

9.2.4 Compiling

To create the executable programs **kkrscf**, **kkrgen**, **kkrchi**, **kkrspec** and the embedded cluster programs **embscf** and **embgen** use make by calling

```
make scf
make gen
make chi
make spec
make embscf
make embgen
```

or

```
make all
and to create the MPI versions call
make scfmpi
and so on, or
make allmpi .
The binaries will be named kkrscf<VERSION> etc. and kkrscf<VERSION>MPI.
The programs can now be used in the standard way, e.g. via
/home/.../progdir/kkrscf < Fe.inp > output
MPI calculations are started via
mpirun -np X /home/.../progdir/kkrscfMPI Fe.inp > output
where X is the number of CPUs you want to use. Note the missing symbol "<". Of course
the full path /home/.../progdir/ can be omitted if you add the program directory to
your standard path PATH. Alternatively you may copy the executable to any directory that
is in your standard path PATH, as e.g. ~/bin.
```

9.3 Dimensioning

The dimension of all arrays that depend on the specific application are fixed automatically using the FORTRAN allocate function. This means that the users is normally not bothered by dimensioning as long as the system he wants to deal with does not require more storage than his computer supplies. In that case the program will crash with a segmentation error (i.e. the user has to be less ambitious or to buy more core memory ...).

The only exception is the variable NRMAX that is fixed to 750 in the file mod_rmesh.f. Thus, if more radial mesh points should be used the setting in mod_rmesh.f should be changed and the programs recompiled.

Bibliography

- [1] J. S. Faulkner, Prog. Mater. Sci. 27, 1 (1982).
- [2] P. Weinberger, *Electron Scattering Theory for Ordered and Disordered Matter* (Oxford University Press, Oxford, 1990).
- [3] A. Gonis, *Green functions for ordered and disordered systems* (North-Holland, Amsterdam, 1992).
- [4] A. Gonis and W. H. Butler, *Multiple scattering in solids, Graduate Texts in Contemporary Physics* (Springer, Berlin, 1999).
- [5] H. Ebert, in *Electronic Structure and Physical Properties of Solids*, Vol. 535 of *Lecture Notes in Physics*, edited by H. Dreyssé (Springer, Berlin, 2000), p. 191.
- [6] H. Ebert and E. K. U. Gross, in *Relativistic Effects in Heavy-Element Chemistry and Physics*, edited by B. Hess (Wiley, Chichester, 2003), p. 163.
- [7] H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74, 096501 (2011).
- [8] H. Ebert, Rep. Prog. Phys. 59, 1665 (1996).
- [9] M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
- [10] M. E. Rose, *Relativistic Electron Theory* (Wiley, New York, 1961).
- [11] H. Ebert, H. Freyer, A. Vernes, and G.-Y. Guo, Phys. Rev. B 53, 7721 (1996).
- [12] H. Ebert, H. Freyer, and M. Deng, Phys. Rev. B 56, 9454 (1997).
- [13] H. Ebert, A. Vernes, and J. Banhart, Solid State Commun. 104, 243 (1997).
- [14] H. Ebert, P. Strange, and B. L. Gyorffy, J. Phys. F: Met. Phys. 18, L135 (1988).
- [15] J. Strempfer *et al.*, Eur. Phys. J. B 14, 63 (2000).
- [16] J. B. Staunton et al., Phys. Rev. B 74, 144411 (2006).
- [17] S. Bornemann *et al.*, Eur. Phys. J. D **45**, 529 (2007).

- [18] X. Wang, D. Wang, R. Wu, and A. J. Freeman, J. Magn. Magn. Materials 159, 337 (1996).
- [19] L. Udvardi, L. Szunyogh, K. Palotás, and P. Weinberger, Phys. Rev. B 68, 104436 (2003).
- [20] I. Turek, J. Kudrnovský, and K. Carva, Phys. Rev. B 86, 174430 (2012).
- [21] S. Ostanin, V. Popescu, H. Ebert, and H. Dreyssé, J. Phys.: Cond. Mat. 11, 9095 (1999).
- [22] J. Minár and H. Ebert, Solid State Commun. 118, 383 (2001).
- [23] H. Ebert and V. Popescu, Phys. Rev. B 56, 12884 (1997).
- [24] J. Minár, V. Popescu, and H. Ebert, Phys. Rev. B 62, 10051 (2000).
- [25] H. Ebert and J. Schwitalla, Phys. Rev. B 55, 3100 (1997).
- [26] H. Ebert and G. Y. Guo, J. Magn. Magn. Materials 148, 174 (1995).
- [27] J. Braun, Rep. Prog. Phys. 59, 1267 (1996).
- [28] J. Minár, J. Braun, S. Mankovsky, and H. Ebert, J. Electron. Spectrosc. Relat. Phenom. 184, 91 (2011).
- [29] J. Braun et al., Phys. Rev. B 82, 024411 (2010).
- [30] G. Malmström and J. Rundgren, Comp. Phys. Commun. 19, 263 (1980).